Severe trauma leads to the activation a systemic inflammatory response that when excessive, contributes to both end-organ dysfunction and immune dysregulation. The goal of this project is to define molecular mechanisms for the initiation and propagation of inflammation following severe injury. We hypothesize that tissue damage and/or ischemia leads to the release of endogenous molecules that then trigger inflammatory signaling through pattern recognition receptors of the innate immune system. We have compelling evidence that two pattern recognition receptors, toll-like receptors 4 and 9 (TLR4 and 9) and the nuclear protein and TLR4 ligand, high mobility group box-1 (HMGB1), play critical roles in initiating inflammation following injury. We will more fully characterize the function of TLR4 and 9 and HMGB1 in the injury response in three Aims.
Under Aim 1, we will define the relative roles of TLR4 and TLR9 to the systemic and organ-specific responses. We will also use a TLR4-loxP mouse recently developed in our lab to define cell-type specific roles for TLR4.
Under Aim II, we will use gene knockout mice to establish the major TLR-dependent signaling pathways involved in trauma-induced inflammatory response.
Under Aim 1 11, we will define the cell types that mobilize and release HMGB1 following systemic injury and the mechanisms leading to HMGB1 release. To accomplish these aims, we will utilize our well-characterized mouse models of hemorrhagic shock and peripheral tissue trauma. It is expected that the completion of this work will both advance our understanding of how the immune system becomes activated after injury and define potential targets for therapeutic intervention to limit the excessive inflammation in severely injured patients.

Public Health Relevance

Trauma is the most common cause of death and morbidity in peopl under the age of 50 in the USA. Much of the morbidity and mortality are due to an excessive inflammatory response. The research described in this proposal is aimed at understanding how trauma induces an inflammatory response at the molecular level with the long-term goal identifying strategies to modify this response and improve survival.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM053789-17
Application #
8522287
Study Section
Special Emphasis Panel (ZGM1-PPBC-5)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
17
Fiscal Year
2013
Total Cost
$237,198
Indirect Cost
$81,009
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Schimunek, Lukas; Namas, Rami A; Yin, Jinling et al. (2018) An Enrichment Strategy Yields Seven Novel Single Nucleotide Polymorphisms Associated With Mortality and Altered Th17 Responses Following Blunt Trauma. Shock 49:259-268
Zettel, Kent; Korff, Sebastian; Zamora, Ruben et al. (2017) Toll-Like Receptor 4 on both Myeloid Cells and Dendritic Cells Is Required for Systemic Inflammation and Organ Damage after Hemorrhagic Shock with Tissue Trauma in Mice. Front Immunol 8:1672
Sun, Qian; Loughran, Patricia; Shapiro, Richard et al. (2017) Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology 65:253-268
Zettel, Kent R; Dyer, Mitchell; Raval, Jay S et al. (2017) Aged Human Stored Red Blood Cell Supernatant Inhibits Macrophage Phagocytosis in an HMGB1 Dependent Manner After Trauma in a Murine Model. Shock 47:217-224
Moore, Frederick A; Moore, Ernest E; Billiar, Timothy R et al. (2017) The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure. J Trauma Acute Care Surg 83:520-531
Yang, Yong; Zhang, Peng; Zhao, Yanfeng et al. (2016) Decreased MicroRNA-26a expression causes cisplatin resistance in human non-small cell lung cancer. Cancer Biol Ther 17:515-25
Yang, Weng-Lang; Sharma, Archna; Wang, Zhimin et al. (2016) Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome. Sci Rep 6:26571
Vodovotz, Yoram (2016) Reverse Engineering the Inflammatory ""Clock"": From Computational Modeling to Rational Resetting. Drug Discov Today Dis Models 22:57-63
Yang, Jie; Zhao, Yanfeng; Zhang, Peng et al. (2016) Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS. Cell Death Dis 7:e2363
Namas, Rami A; Almahmoud, Khalid; Mi, Qi et al. (2016) Individual-specific principal component analysis of circulating inflammatory mediators predicts early organ dysfunction in trauma patients. J Crit Care 36:146-153

Showing the most recent 10 out of 302 publications