PROJECT 1 - INTRACELLULAR NETWORKS. Project Leader: J. Broach (Molbio) Six research groups in the Center work on distinct examples of intracellular networks. In all cases the approach to modeling a signaling network consists of a joint effort of experimental biologists and mathematically oriented theorists. The dynamic interplay between the experimentalists and the theorists occurs on a daily basis and is made possible by the close physical proximity and the collaborative mind set (see Figure 1) of everyone associated with the Center. In addition, all the groups draw heavily on the core facilities of the Center;microarray, mass spectrometry and imaging facilities provide the experimentalists with the means of acquiring requisite quantitative data and the computational core provides a means of storing and analyzing those data. Two fundamental problems in cellular biology are being addressed: transcriptional networks (i.e. defining and analyzing how cells coordinate their complex transcriptional changes that occur under changing environments, and coordination of cell growth (i.e. how cells manage to maintain balanced growth over a wide range of growth rates and environmental perturbations).

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM071508-10
Application #
8534149
Study Section
Special Emphasis Panel (ZGM1-CBCB-4)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$267,592
Indirect Cost
$99,361
Name
Princeton University
Department
Type
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Klein, Eili Y; Graham, Andrea L; Llinas, Manuel et al. (2014) Cross-reactive immune responses as primary drivers of malaria chronicity. Infect Immun 82:140-51
Ghersi, Dario; Singh, Mona (2014) Interaction-based discovery of functionally important genes in cancers. Nucleic Acids Res 42:e18
McIsaac, R Scott; Gibney, Patrick A; Chandran, Sunil S et al. (2014) Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucleic Acids Res 42:e48
Andersen, Erik C; Bloom, Joshua S; Gerke, Justin P et al. (2014) A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet 10:e1004156
Krotov, Dmitry; Dubuis, Julien O; Gregor, Thomas et al. (2014) Morphogenesis at criticality. Proc Natl Acad Sci U S A 111:3683-8
Ward, Lucas D; Wang, Junbai; Bussemaker, Harmen J (2014) Characterizing a collective and dynamic component of chromatin immunoprecipitation enrichment profiles in yeast. BMC Genomics 15:494
Elfving, Nils; Chereji, R?zvan V; Bharatula, Vasudha et al. (2014) A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 42:5468-82
Molden, Rosalynn C; Goya, Jonathan; Khan, Zia et al. (2014) Stable isotope labeling of phosphoproteins for large-scale phosphorylation rate determination. Mol Cell Proteomics 13:1106-18
Abouchar, Laurent; Petkova, Mariela D; Steinhardt, Cynthia R et al. (2014) Fly wing vein patterns have spatial reproducibility of a single cell. J R Soc Interface 11:20140443
Riley, Todd R; Slattery, Matthew; Abe, Namiko et al. (2014) SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol Biol 1196:255-78

Showing the most recent 10 out of 351 publications