A Center for Systems Biology will be established at the Institute for Systems Biology (ISB) in Seattle, WA, to accomplish the following goals: 1) Develop an institutional structure and culture that fosters multidisciplinary research and career development through professional activities and outreach to the wider community;2) Develop new systems level tools and approaches to understanding dynamic biological networks and complexity and to use the measurement needs of biology to drive the development of new technologies and computational tools;3) Develop core facilities that serve as venues for collaborative technology development, implementation, and application in a variety of biological systems;and 4) Promote innovative training opportunities for systems biology and inquiry-based K-12 science education. The Center will be organized around three research foci: model biological systems (halobacteria and yeast);mammalian systems (immunity and disease blood marker diagnostics);and computational biology. The research will be supported by four core facilities (genomics;proteomics;microfluidics and imaging;and computational biology support). Collaborative interactions will also occur through academic and industrial partnerships. Complex biological systems are characterized by internal regulatory programs and external environmental factors that stimulate multiple interactions between networks of genes and proteins. Elucidating the key relationships among elements of these biological networks constitutes the disciplinary challenge of systems biology. Analysis of biological networks requires technologies for collecting quantitative data using procedures with high-throughput speed and accuracy, and sophisticated mathematical and statistical algorithms. Thus, the need to decipher the dynamics of biological complexity drives the invention of experimental tools and methodologies for handling different types of data and, coordinately, the development of effective computational strategies for turning data into information into knowledge. Systems biology research proceeds most productively in a multidisciplinary environment where teams of biologists, technologists, and computer scientists speak a common language. To stimulate learning and interaction the Center will develop courses, symposia, workshops, internships, and sabbatical opportunities aimed at career development and training for systems biologists. The Center is committed to sharing resources and results with the scientific community;the Center is also committed to an extensive inquiry-based science education program for grades K-12 because improved scientific literacy is a requirement for 21st century culture. A systems approach to disease will revolutionize medicine in that very early diagnoses may be made from a blood test that detects network perturbations-thus permitting many cancers and other chronic conditions to be cured or effectively managed by conventional treatments. Drug discovery and detection of side effects will also be revolutionized by a systems approach. Over the next 5 to 20 years, systems biology will serve as the foundation for predictive, preventive and personalized medicine.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-CBCB-2 (SB))
Program Officer
Brazhnik, Paul
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Institute for Systems Biology
United States
Zip Code
Deutsch, Eric W; Csordas, Attila; Sun, Zhi et al. (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45:D1100-D1106
Turkarslan, Serdar; Raman, Arjun V; Thompson, Anne W et al. (2017) Mechanism for microbial population collapse in a fluctuating resource environment. Mol Syst Biol 13:919
Sen, Payel; Luo, Jie; Hada, Arjan et al. (2017) Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex. Cell Rep 18:2135-2147
Joesch-Cohen, Lena M; Glusman, Gustavo (2017) Differences between the genomes of lymphoblastoid cell lines and blood-derived samples. Adv Genomics Genet 7:1-9
Zuck, Meghan; Austin, Laura S; Danziger, Samuel A et al. (2017) The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Front Microbiol 8:2183
Kessler, Anne; Dankwa, Selasi; Bernabeu, Maria et al. (2017) Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host Microbe 22:601-614.e5
Baker, Qanita Bani; Podgorski, Gregory J; Vargis, Elizabeth et al. (2017) A computational study of VEGF production by patterned retinal epithelial cell colonies as a model for neovascular macular degeneration. J Biol Eng 11:26
Herricks, Thurston; Mast, Fred D; Li, Song et al. (2017) ODELAY: A Large-scale Method for Multi-parameter Quantification of Yeast Growth. J Vis Exp :
Michalik, Stephan; Depke, Maren; Murr, Annette et al. (2017) A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Sci Rep 7:9718
Cromie, Gareth A; Tan, Zhihao; Hays, Michelle et al. (2017) Transcriptional Profiling of Biofilm Regulators Identified by an Overexpression Screen in Saccharomyces cerevisiae. G3 (Bethesda) 7:2845-2854

Showing the most recent 10 out of 321 publications