Project 2 Multiscale spatial and temporal dynamics of yeast colony development Introduction. In living systems, the characteristics of an individual, including traits such as susceptibility to disease or response to therapy, are determined by the coupling of processes that function at different scales of organization. For example, an individual's DNA sequence constrains the molecular networks that govern its cellular states and behaviors, which in turn determine the form and functions of multi-cellular structures. Microorganisms, including the yeast Saccharomyces cerevisiae, are traditionally used as models for investigating basic cellular processes at the unicellular level. However, unicellular organisms can form multi-cellular communities and differentiate into specialized structures to benefit the population. In some wild isolates of S. cerevisiae colonies (which start from a single cell and divide mitotically to become a structure of -10[8] cells) undergo a morphological transition characterized by complex patterns of

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM076547-07
Application #
8539497
Study Section
Special Emphasis Panel (ZGM1-CBCB-3)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
7
Fiscal Year
2013
Total Cost
$452,635
Indirect Cost
$170,176
Name
Institute for Systems Biology
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98109
Lee, Joon-Yong; Choi, Hyungwon; Colangelo, Christopher M et al. (2018) ABRF Proteome Informatics Research Group (iPRG) 2016 Study: Inferring Proteoforms from Bottom-up Proteomics Data. J Biomol Tech 29:39-45
Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda et al. (2018) Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex. Cell Rep 22:3251-3264
Maixner, Frank; Turaev, Dmitrij; Cazenave-Gassiot, Amaury et al. (2018) The Iceman's Last Meal Consisted of Fat, Wild Meat, and Cereals. Curr Biol 28:2348-2355.e9
Holden, Jennifer M; Koreny, Ludek; Obado, Samson et al. (2018) Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes. Mol Biol Cell 29:1100-1110
Hoopmann, Michael R; Winget, Jason M; Mendoza, Luis et al. (2018) StPeter: Seamless Label-Free Quantification with the Trans-Proteomic Pipeline. J Proteome Res 17:1314-1320
Slama, Patrick; Hoopmann, Michael R; Moritz, Robert L et al. (2018) Robust determination of differential abundance in shotgun proteomics using nonparametric statistics. Mol Omics 14:424-436
Jabbari, Neda; Glusman, Gustavo; Joesch-Cohen, Lena M et al. (2018) Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1. PLoS One 13:e0198135
Trachana, Kalliopi; Bargaje, Rhishikesh; Glusman, Gustavo et al. (2018) Taking Systems Medicine to Heart. Circ Res 122:1276-1289
Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold et al. (2018) The SysteMHC Atlas project. Nucleic Acids Res 46:D1237-D1247
Kazantsev, Fedor; Akberdin, Ilya; Lashin, Sergey et al. (2018) MAMMOTh: A new database for curated mathematical models of biomolecular systems. J Bioinform Comput Biol 16:1740010

Showing the most recent 10 out of 346 publications