Imaging Cytometry and Microfluidics (ICM) core I (Ozinsky) Overview. The core was established by the Center to provide the resources for automated high-throughput imaging experiments on live cells along with cell purification and analysis. We have contributed to research resulting in 13 publications and two patent applications involving the analysis of cells across bacterial, yeast and mammalian systems. This has included projects for the purification and analysis of single cells, large-scale imaging screens, analysis of subcellular dynamics, and the development of new methods devices and computational tools. The core is staffed by a director, full-time manager,and a full-time technician, and has open access to state-of-the-art microscopy, cytometry, and microfluidics (see Resources). The core provides comprehensive training for users to operate equipment independently, and maintains a website with manuals and protocols to ensure standardized procedures. The ICM core has integrated control of microscopes, fluidics, image acquisition and analysis under Lab-VIEW (National Instruments) and MatLab (MathWorks). Three cell culture incubators are available to enable time-lapse/live-cell imaging on these workstations. Our dedicated clean room has a variety of soft lithography equipment including: a PDMS pre polymer mixer, a spin-coater, a dissection microscope for PDMS device layer alignment, a vacuum dessicator, PDMS punches, and a dedicated 80?C convection oven. Further, we have established an annual three-day Microfluidics course to teach the fundamental skills for PDMS design, fabrication, and operation (see Education and Training Plan).

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-CBCB-3)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Institute for Systems Biology
United States
Zip Code
Peterson, Eliza J R; Ma, Shuyi; Sherman, David R et al. (2016) Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat Microbiol 1:16078
Cromie, Gareth A; Tan, Zhihao; Hays, Michelle et al. (2016) Dissecting Gene Expression Changes Accompanying a Ploidy-Based Phenotypic Switch. G3 (Bethesda) :
Gatto, Laurent; Hansen, Kasper D; Hoopmann, Michael R et al. (2016) Testing and Validation of Computational Methods for Mass Spectrometry. J Proteome Res 15:809-14
Plaisier, Christopher L; O'Brien, Sofie; Bernard, Brady et al. (2016) Causal Mechanistic Regulatory Network for Glioblastoma Deciphered Using Systems Genetics Network Analysis. Cell Syst 3:172-86
Vialas, Vital; Sun, Zhi; Reales-Calderón, Jose A et al. (2016) A comprehensive Candida albicans PeptideAtlas build enables deep proteome coverage. J Proteomics 131:122-30
Deutsch, Eric W; Sun, Zhi; Campbell, David S et al. (2016) Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics. J Proteome Res 15:4091-4100
Stittrich, Anna B; Ashworth, Justin; Shi, Mude et al. (2016) Genomic architecture of inflammatory bowel disease in five families with multiple affected individuals. Hum Genome Var 3:15060
Zhou, Joseph Xu; Samal, Areejit; d'Hérouël, Aymeric Fouquier et al. (2016) Relative stability of network states in Boolean network models of gene regulation in development. Biosystems 142-143:15-24
Xue, Ting; Liu, Ping; Zhou, Yong et al. (2016) Interleukin-6 Induced ""Acute"" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics. Theranostics 6:773-94
McDermott, Suzanne M; Luo, Jie; Carnes, Jason et al. (2016) The Architecture of Trypanosoma brucei editosomes. Proc Natl Acad Sci U S A 113:E6476-E6485

Showing the most recent 10 out of 300 publications