Essentially every step in the HIV life cycle interfaces intimately with the host cell machinery. The Pittsburgh Center of HIV Protein Interactions will focus on the steps and interactions that occur with the host after engagement of cell surface receptors and membrane fusion and before integration of the viral genome into that of the host, the so called """"""""early events"""""""". Several essential molecular interactions and enzymatic activities occur within this time window, necessary for productive progression of the viral life cycle. Thus, it represents a pivotal period in the infection process, during which the susceptibility of the virs to disruptive interventions is likely to be high and little explored. Broadly speaking, the processes that we will focus on include capsid disassembly (uncoating), reverse transcription, evasion of innate immune factors, and nuclear entry. Given the importance of the capsid structure and its interactions for many of these processes, we have expanded capsid studies to include an analysis of CA protein maturation and capsid formation. We plan to build on our successes and apply the extensive and complementary experimental expertise of our team to carry out 1) biochemical and high-resolution structure studies of individual proteins and complexes, 2) proteomics analyses to identify novel interactions and complexes, 3) virology and imaging studies to understand protein function in the context of the cell and virus infection, 4) sequence analyses of evolutionary correlations in protein interactions and dynamics, and 5) computational analyses to generate an all-atom model of the HIV-1 capsid and to elucidate the physical basis of uncoating (the process by which the capsid disassembles). Further, we plan to extend our Correlative Imaging Technology Development Program to develop specific probes and tools for exploring the dynamics of HIV-1 and associated proteins during cellular infection

Public Health Relevance

Results provided by the proposed research are expected to have major implications in the global fight against AIDS, still considered an incurable disease with a pressing need for new therapeutic strategies and novel drug targets. Identifying and characterizing atomic structures of key HIV-1 host protein interactions in the immediate post-entry stage of the virus lifecycle will open new avenues in this endeavor.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-K (50))
Program Officer
Sakalian, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Gupta, Rupal; Lu, Manman; Hou, Guangjin et al. (2016) Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies. J Phys Chem B 120:329-39
Van Oss, S Branden; Shirra, Margaret K; Bataille, Alain R et al. (2016) The Histone Modification Domain of Paf1 Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation through an Interaction with Rad6. Mol Cell 64:815-825
Perilla, Juan R; Gronenborn, Angela M (2016) Molecular Architecture of the Retroviral Capsid. Trends Biochem Sci 41:410-20
Sharaf, Naima G; Ishima, Rieko; Gronenborn, Angela M (2016) Conformational Plasticity of the NNRTI-Binding Pocket in HIV-1 Reverse Transcriptase: A Fluorine Nuclear Magnetic Resonance Study. Biochemistry 55:3864-73
Byeon, In-Ja L; Byeon, Chang-Hyeock; Wu, Tiyun et al. (2016) Nuclear Magnetic Resonance Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity. Biochemistry 55:2944-59
Saito, Akatsuki; Ferhadian, Damien; Sowd, Gregory A et al. (2016) Roles of Capsid-Interacting Host Factors in Multimodal Inhibition of HIV-1 by PF74. J Virol 90:5808-23
Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L et al. (2016) In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat Commun 7:13689
Rasheedi, Sheeba; Shun, Ming-Chieh; Serrao, Erik et al. (2016) The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes. J Biol Chem 291:11809-19
Ramalho, Ruben; Rankovic, Sanela; Zhou, Jing et al. (2016) Analysis of the mechanical properties of wild type and hyperstable mutants of the HIV-1 capsid. Retrovirology 13:17
Oum, Yoon Hyeun; Desai, Tanay M; Marin, Mariana et al. (2016) Click labeling of unnatural sugars metabolically incorporated into viral envelope glycoproteins enables visualization of single particle fusion. J Virol Methods 233:62-71

Showing the most recent 10 out of 113 publications