Essentially every step in the HIV life cycle interfaces intimately with the host cell machinery. The Pittsburgh Center of HIV Protein Interactions will focus on the steps and interactions that occur with the host after engagement of cell surface receptors and membrane fusion through integration of the viral genome into that of the host, the so called ?early events?. Several essential molecular interactions and enzymatic activities occur within this time window, necessary for productive progression of the viral life cycle. Thus, it represents a pivotal period in the infection process, during which the susceptibility of the virus to disruptive interventions is likely to be high and little explored. Broadly speaking, the processes that we will focus on include uncoating (the process by which the capsid disassembles), reverse transcription, evasion from innate immune factors, nuclear entry and integration. Given the importance of the capsid structure and its interactions for many of these processes, we will also explore maturation and in particular formation of the capsid core. We plan to build on our successes and apply the extensive and complementary experimental expertise of our team to carry out 1) biochemical and high-resolution structure studies of individual proteins and complexes, 2) biochemical, biophysical, and proteomics analyses to identify novel interactions and complexes, 3) virology and imaging studies to understand protein function in the context of the cell and virus infection, and 4) computational analyses to elucidate the physical basis of capsid formation and capsid interactions with binding partners. Broadly, the program comprises projects on capsid interactions, the engagement of Vpr with the DNA repair machinery, and retroviral intasome structure. Further, we plan two new Technology Development Programs, one to develop nanocrystal screening specifically for MicroED and the other to develop ultra-fast MAS NMR methods for structure determination of native particles.

Public Health Relevance

Results provided by the proposed research are expected to have major implications in the global fight against AIDS, still considered an incurable disease with a pressing need for new therapeutic strategies and novel drug targets. Identifying and characterizing atomic structures of key HIV-1 host protein interactions in the immediate post-entry stage of the virus lifecycle will open new avenues in this endeavor.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
2P50GM082251-11
Application #
9407931
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Sakalian, Michael
Project Start
2007-08-27
Project End
2022-07-31
Budget Start
2017-08-10
Budget End
2018-07-31
Support Year
11
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Martin, Jessica L; Mendonça, Luiza M; Marusinec, Rachel et al. (2018) Critical Role of the Human T-Cell Leukemia Virus Type 1 Capsid N-Terminal Domain for Gag-Gag Interactions and Virus Particle Assembly. J Virol 92:
Wang, Mingzhang; Lu, Manman; Fritz, Matthew P et al. (2018) Fast Magic-Angle Spinning 19 F?NMR Spectroscopy of HIV-1 Capsid Protein Assemblies. Angew Chem Int Ed Engl 57:16375-16379
Paramasivam, Sivakumar; Gronenborn, Angela M; Polenova, Tatyana (2018) Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study. Solid State Nucl Magn Reson 92:1-6
Fritz, Matthew; Quinn, Caitlin M; Wang, Mingzhang et al. (2018) Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM. Phys Chem Chem Phys 20:9543-9553
Quinn, Caitlin M; Wang, Mingzhang; Fritz, Matthew P et al. (2018) Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5? identified by magic-angle spinning NMR and molecular dynamics simulations. Proc Natl Acad Sci U S A 115:11519-11524
Varlakhanova, Natalia V; Alvarez, Frances J D; Brady, Tyler M et al. (2018) Structures of the fungal dynamin-related protein Vps1 reveal a unique, open helical architecture. J Cell Biol 217:3608-3624
Ning, Jiying; Zhong, Zhou; Fischer, Douglas K et al. (2018) Truncated CPSF6 Forms Higher-Order Complexes That Bind and Disrupt HIV-1 Capsid. J Virol 92:
Himes, Benjamin A; Zhang, Peijun (2018) emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat Methods 15:955-961
Balasubramaniam, Muthukumar; Zhou, Jing; Addai, Amma et al. (2018) PF74 Inhibits HIV-1 Integration by Altering The Composition of the Preintegration Complex. J Virol :
Lu, Manman; Sarkar, Sucharita; Wang, Mingzhang et al. (2018) 19F Magic Angle Spinning NMR Spectroscopy and Density Functional Theory Calculations of Fluorosubstituted Tryptophans: Integrating Experiment and Theory for Accurate Determination of Chemical Shift Tensors. J Phys Chem B 122:6148-6155

Showing the most recent 10 out of 144 publications