The X-ray Crystallography Core facility provides excellent crystallization, data collection, and crystallographic computing facilities. It also provides outstanding human resources in the form of talented crystallographers and a strong training environment. Location of the Core facilities adjacent to the Hill, Sundquist, and Kay labs on the third floor of the EEJMRB provides a convenient and accessible environment that maximizes productive formal and informal interactions. A postdoctoral fellow and a student within this Core are dedicated to Center projects (VPS4 and ALIX). The two managers and technician (50:50 with Bacterial Expression Core) provide expertise and support for additional projects. The core can also support use by other Center personnel and projects as appropriate. For example, Steve Alam (Manager Eukaryotic Protein Expression Core) recently played the lead role on determination of the EAP45(ESCRTII) GLUE-ubiquitin crystal structure with assistance from Frank Whitby17;Anna Scott determined the structure of human VPS4B with assistance from Whitby19;Schubert played the lead crystallographic role on the TSG101-ubiquitin complex20, and Andy VanDemark, a postdoc in the Hill lab, recently determined crystal structures of a potent HIV-1 entry inhibitor complex with the gp41 N-peptide (submitted) and a sterically restricted N-peptide antigen (in preparation) in collaborations with the Kay lab. The strength of the Core is enhanced by interactions with major national facilities and structural genomics consortia. Extensive use of remote data collection services (e.g, at NSLS and SSRL) typically enables synchrotron data collection within about a week of identifying a suitable crystal. We routinely utilize the Hauptman-Woodward Institute crystallization facility of the Northeastern Structural Genomics Consortium. This approach provided initial conditions that led to the preliminary crystals of dodecameric Vps4p after vapor diffusion trials failed at our home lab. We recently initiated a novel collaboration with the Joint Centers for Structural Genomics that will allow the full power of high-throughput methodology to be applied to the focused scientific questions being addressed by our program. This arrangement will also allow us to accommodate a potentially high demand for assistance with crystal structure determinations by the larger community of HIV biologists, such as through the R21 and other mechanisms.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-K (50))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Utah
Salt Lake City
United States
Zip Code
Bailey, Lucas J; Sheehy, Kimberly M; Dominik, Pawel K et al. (2017) Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination. J Mol Biol :
Hammond, John A; Zhou, Li; Lamichhane, Rajan et al. (2017) A Survey of DDX21 Activity During Rev/RRE Complex Formation. J Mol Biol :
Sdano, Matthew A; Fulcher, James M; Palani, Sowmiya et al. (2017) A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. Elife 6:
Kieffer, Collin; Ladinsky, Mark S; Ninh, Allen et al. (2017) Longitudinal imaging of HIV-1 spread in humanized mice with parallel 3D immunofluorescence and electron tomography. Elife 6:
Mamede, João I; Cianci, Gianguido C; Anderson, Meegan R et al. (2017) Early cytoplasmic uncoating is associated with infectivity of HIV-1. Proc Natl Acad Sci U S A 114:E7169-E7178
Lamichhane, Rajan; Hammond, John A; Pauszek 3rd, Raymond F et al. (2017) A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly. Nucleic Acids Res 45:4632-4641
Monroe, Nicole; Han, Han; Shen, Peter S et al. (2017) Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. Elife 6:
Gu, Mingyu; LaJoie, Dollie; Chen, Opal S et al. (2017) LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc Natl Acad Sci U S A 114:E2166-E2175
Freund, Natalia T; Wang, Haoqing; Scharf, Louise et al. (2017) Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 9:
Pak, Alexander J; Grime, John M A; Sengupta, Prabuddha et al. (2017) Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane. Proc Natl Acad Sci U S A 114:E10056-E10065

Showing the most recent 10 out of 160 publications