Protein Interactions Core (Mvszka. Director) Overview Our Protein Interaction Core will tap into an existing Core facility that is part of the University of Utah's Health Sciences Core facilities. The Protein Interaction Core facility was established in 1996 to provide internal and external academic users access to state-of-the-art, label-free, real-time interaction technologies. Over the past 10 years, this facility has contributed to more than 100 research projects that encompass a wide array of biological areas. The Protein Interaction Core is centrally located within the School of Medicine (Rm 4A416) on the Health Sciences campus. The laboratory's 1600 square feet of space was entirely renovated in 1997 and was specifically designed to accommodate the Core facility's equipment and personnel. Currently, the facility maintains 7 surface plasmon resonance-based optical biosensors: 3 Biacore 2000s, 1 Biacore 3000, 1 Biacore S51, 1 Biacore Flexchip, and 1 Lumera Proteome Processor. The Biacore 2000/3000 platforms are ideal for measuring protein-protein interactions, while the Biacore S51 is designed for small-molecule interaction analysis. The Flexchip and Proteome Processor instruments are array-based imaging systems that allow one to study up to 1000 binding partners immobilized onto the sensor surface at one time. The Core has worked closely with both Biacore and Lumera on the development of this new hardware, as well as data analysis software. In early 2007, we plan to add a new biosensor (the ProteOn XPR36 from BioRad Laboratories) to our Core, funded by ab NIH Shared Instrument Grant. Together, these state-of-the-art instruments allow us to measure the interactions of biomolecules such as proteins, oligonucleotides, and lipids in high-resolution, as well as high-throughput, formats. Experiments are scheduled through email contacts with the Core's manager. Typically, the investigator and their staff then meet with the manager to plan the best course of action for the proposed study. Samples are then dropped off at the Core and experiments are initiated the same day. This ensures that labile samples are able to be processed in a timely manner.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-K)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Utah
Salt Lake City
United States
Zip Code
Wang, Haoqing; Cohen, Alexander A; Galimidi, Rachel P et al. (2016) Cryo-EM structure of a CD4-bound open HIV-1 envelope trimer reveals structural rearrangements of the gp120 V1V2 loop. Proc Natl Acad Sci U S A 113:E7151-E7158
Monroe, Nicole; Hill, Christopher P (2016) Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. J Mol Biol 428:1897-911
Imam, Sabrina; Talley, Sarah; Nelson, Rachel S et al. (2016) TRIM5α Degradation via Autophagy Is Not Required for Retroviral Restriction. J Virol 90:3400-10
Grime, John M A; Dama, James F; Ganser-Pornillos, Barbie K et al. (2016) Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 7:11568
Chen, Jianbo; Rahman, Sheikh Abdul; Nikolaitchik, Olga A et al. (2016) HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein. Proc Natl Acad Sci U S A 113:E201-8
Chuong, Edward B; Elde, Nels C; Feschotte, Cédric (2016) Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:1083-7
Ma, Hanhui; Tu, Li-Chun; Naseri, Ardalan et al. (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528-30
Iwasa, Janet H (2016) The Scientist as Illustrator. Trends Immunol 37:247-50
Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D et al. (2016) Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. Elife 5:
Coey, Aaron; Larsen, Kevin; Puglisi, Joseph D et al. (2016) Heterogeneous structures formed by conserved RNA sequences within the HIV reverse transcription initiation site. RNA 22:1689-1698

Showing the most recent 10 out of 130 publications