stract (Official) 1) Bacterial Protein Expression Core (Hill. Director: Schubert. Manager) Overview The Bacterial Protein Expression Core is located on the third floor of the EEJMRB at the University of Utah In close proximity to the labs of Hill, Sundquist, and Kay. It is managed by Heidi Schubert and will be staffed by two Center-funded technicians. The facility provides efficient construction of expression vectors, testing of protein expression and solubility, protein purification, and characterization. We have established a synergistic relationship with the Utah Molecular Hematology Protein Expression Core for the cost effective production of recombinant TEV protease and Pfu polymerase, and employ services of the University of Utah core facilities in mass spectrometry, oligonucleotide synthesis, N-terminal protein sequencing, and DNA sequencing. The Bacterial Protein Expression Core facilities are integrated with operations of the Eukaryotic Protein Expression Core for bioinformatics, cloning, and protein purification, and there is also a close association with protein structure determination efforts in X-ray and Protein NMR cores. This core will therefore facilitate structural and biochemical studies on targets identified by the Center members pursuing questions of HIV/Host biology. In general, the methods used in this Core are standard, but have been adapted to maximize efficiency on a scale appropriate for the targeted, but ambitious, scope of this application. The basic instrumentation and protocols are already in place and will be expanded to match increased demand if the Center is funded. The increased throughput will be achieved by efficient database management, consolidated bioinformatics resources, use of technical staff, and standardization and refinement of protocols. The approaches are an extension of the methodology that has supported structural and biochemical studies by the Hill and Sundquist labs (see biosketches for publications). Our initial target capacity is an average of 24 new expression vectors constructed per week, although the actual rate will fluctuate in response to demand. This level of throughput will allow aggressive approaches to problems, such as optimizing N- and C-termini or making surface mutations to produce crystallizable constructs. If demand exceeds capacity, we can add personnel/instrumentation/supplies on a charge-back basis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM082545-08
Application #
8728897
Study Section
Special Emphasis Panel (ZRG1-AARR-K)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
8
Fiscal Year
2014
Total Cost
$187,288
Indirect Cost
$63,160
Name
University of Utah
Department
Type
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Wang, Haoqing; Cohen, Alexander A; Galimidi, Rachel P et al. (2016) Cryo-EM structure of a CD4-bound open HIV-1 envelope trimer reveals structural rearrangements of the gp120 V1V2 loop. Proc Natl Acad Sci U S A 113:E7151-E7158
Monroe, Nicole; Hill, Christopher P (2016) Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. J Mol Biol 428:1897-911
Imam, Sabrina; Talley, Sarah; Nelson, Rachel S et al. (2016) TRIM5α Degradation via Autophagy Is Not Required for Retroviral Restriction. J Virol 90:3400-10
Grime, John M A; Dama, James F; Ganser-Pornillos, Barbie K et al. (2016) Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 7:11568
Chen, Jianbo; Rahman, Sheikh Abdul; Nikolaitchik, Olga A et al. (2016) HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein. Proc Natl Acad Sci U S A 113:E201-8
Chuong, Edward B; Elde, Nels C; Feschotte, Cédric (2016) Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:1083-7
Ma, Hanhui; Tu, Li-Chun; Naseri, Ardalan et al. (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528-30
Iwasa, Janet H (2016) The Scientist as Illustrator. Trends Immunol 37:247-50
Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D et al. (2016) Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. Elife 5:
Coey, Aaron; Larsen, Kevin; Puglisi, Joseph D et al. (2016) Heterogeneous structures formed by conserved RNA sequences within the HIV reverse transcription initiation site. RNA 22:1689-1698

Showing the most recent 10 out of 130 publications