Receptor endocytosis is a fundamental cellular process that regulates the quality and duration of signal transduction. This project uses a systems-based approach to comparatively evaluate the endocytic trafficking of two receptors (FceRI immunoreceptor and the Epidermal Growth Factor Receptor, erbB1) in an immune cell line. The interdisciplinary team will test the hypothesis that ligand-dependent, receptor-specific signaling dictates spatial and temporal regulation of membrane trafficking machinery and pathway selection.
Three specific aims will examine how: 1) receptors are selectively internalized at the plasma membrane through clathrin-dependent and independent pathways;2) endocytic machinery responds to and is regulated by """"""""input signals"""""""" from receptor cargo;and 3) receptor signaling is controlled by location and via specific interactions with endocytic proteins. Sophisticated spatiotemporal imaging will span nano to micron scales and will be integrated with biochemical analyses. The experimental data sets will iteratively inform rule-based mechanistic and population dynamics models. Outcomes from this research plan will reveal new information on pathway saturation limits, receptor competition for limiting components, among other parameters, that cannot be extrapolated when analyzing receptors individually.

Public Health Relevance

This project will take a systems biology approach to understand how two apparently distinct cellular processes - receptor endocytosis and receptor signaling - are linked in time and space. We expect to show that these processes are tightly coupled, orchestrating the cellular responses by feedback loops and interacting regulatory steps. Experimentalists on the team will use very innovative imaging methods to capture the sequences of events and the spatial relationships of players in both pathways. We will search for unknown players through targeted genetic screening and then validate these hits with novel microscopy and biochemical approaches. The large, complex data sets will be analyzed by mathematical modeling specialists. The interdisciplinary teams will work in coordinated fashion to use computation and bench skills to understand these very complex, inter-connected processes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
2P50GM085273-06
Application #
8767025
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-07-31
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of New Mexico Health Sciences Center
Department
Type
DUNS #
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Termini, Christina M; Gillette, Jennifer M (2017) Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol 5:34
Harmon, Brooke; Chylek, Lily A; Liu, Yanli et al. (2017) Timescale Separation of Positive and Negative Signaling Creates History-Dependent Responses to IgE Receptor Stimulation. Sci Rep 7:15586
Schwartz, Samantha L; Cleyrat, Cédric; Olah, Mark J et al. (2017) Differential mast cell outcomes are sensitive to Fc?RI-Syk binding kinetics. Mol Biol Cell 28:3397-3414
Kocha?czyk, Marek; Kocieniewski, Pawe?; Koz?owska, Emilia et al. (2017) Relaxation oscillations and hierarchy of feedbacks in MAPK signaling. Sci Rep 7:38244
Mrass, Paulus; Oruganti, Sreenivasa Rao; Fricke, G Matthew et al. (2017) ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs. Nat Commun 8:1010
Medina, Christopher S; Manifold-Wheeler, Brett; Gonzales, Aaron et al. (2017) Automated Computational Processing of 3-D MR Images of Mouse Brain for Phenotyping of Living Animals. Curr Protoc Mol Biol 119:29A.5.1-29A.5.38
Graus, Matthew S; Neumann, Aaron K; Timlin, Jerilyn A (2017) Hyperspectral fluorescence microscopy detects autofluorescent factors that can be exploited as a diagnostic method for Candida species differentiation. J Biomed Opt 22:16002
Mahajan, Avanika; Youssef, Lama A; Cleyrat, Cédric et al. (2017) Allergen Valency, Dose, and Fc?RI Occupancy Set Thresholds for Secretory Responses to Pen a 1 and Motivate Design of Hypoallergens. J Immunol 198:1034-1046
Freed, Daniel M; Bessman, Nicholas J; Kiyatkin, Anatoly et al. (2017) EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell 171:683-695.e18
Cleyrat, Cédric; Girard, Romain; Choi, Eun H et al. (2017) Gene editing rescue of a novel MPL mutant associated with congenital amegakaryocytic thrombocytopenia. Blood Adv 1:1815-1826

Showing the most recent 10 out of 123 publications