This is a proposal to establish the UCSD Center for Systems Biology to study Cellular Stress Responses. Systems Biology has made huge advances in the areas of functional genomics and proteomics (that involve the collection and analysis of large amounts of data that identify gene sets and their interactions), and in the area of Synthetic Biology (that involve the development of biological theory and its testing with engineered circuits). The UCSD Centers goal is to develop research strategies by which the two approaches can be linked to develop mathematically grounded insights about clinically relevant human health problems. This will involve computational modeling and experimental studies of dynamically regulated biological systems at several scales: genome-wide networks, functional modules, and reduced systems that recapitulate the essence of the regulated behavior. Cellular Responses to genotoxic, pathogenic, or metabolic stresses involve signaling events that are dynamically regulated and are responsible for coordinated steps in repair, survival, or cell cycle regulation that protect the organism. However, misregulation of such stress responses do not only impair the cell's ability to contain the damage, but may cause further damage as manifested in chronic inflammatory diseases and cancer. In order to understand cellular stress responses, we propose to create a Center for Systems Biology in which a multi-disciplinary group of laboratories from several departments and divisions at UCSD contribute diverse expertise and approaches, ranging from functional genomics, proteomics and network reconstruction to mathematical modeling, synthetic biology and dynamic cell biological imaging approaches with novel in vivo reporters.
The specific aims of the Center are to (1) understand the regulation of stress responses by identifying regulators and modeling their mechanism of action in regulatory networks;(2) understand how cellular stress responses affect latent pathogens (HIV) and are affected by other dynamic control systems (such as the circadian cycle in mast cells) (3) understand the design principles of dynamical regulation and homeostatic control using natural and synthetic systems (4) develop a national community of leaders to meet conceptual, technological and educational challenges through multi-disciplinary collaboration and common core facilities (5) provide opportunities to train today's and tomorrow's leaders in a Systems Biology that reveals mathematically grounded insights about clinically relevant human health problems.

Public Health Relevance

Cellular responses to stress (such as pathogens, irradiation, metabolic imbalances or toxins) are critical for human health;stress responses not only limit damage but misregulation can cause cancer and inflammatory diseases. The proposed combined experimental and predictive modeling approaches promise to understand the regulatory systems, which is key to the development of much needed disease-preventative and therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM085764-05
Application #
8729592
Study Section
Special Emphasis Panel (ZGM1-CBCB-2)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
5
Fiscal Year
2014
Total Cost
$130,217
Indirect Cost
$46,206
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Zhang, Wei; Bojorquez-Gomez, Ana; Velez, Daniel Ortiz et al. (2018) A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat Genet 50:613-620
Dai, Xiongfeng; Zhu, Manlu; Warren, Mya et al. (2018) Slowdown of Translational Elongation in Escherichia coli under Hyperosmotic Stress. MBio 9:
Muse, Evan D; Yu, Shan; Edillor, Chantle R et al. (2018) Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proc Natl Acad Sci U S A 115:E4680-E4689
Bui, Nam; Huang, Justin K; Bojorquez-Gomez, Ana et al. (2018) Disruption of NSD1 in Head and Neck Cancer Promotes Favorable Chemotherapeutic Responses Linked to Hypomethylation. Mol Cancer Ther 17:1585-1594
Huang, Justin K; Carlin, Daniel E; Yu, Michael Ku et al. (2018) Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. Cell Syst 6:484-495.e5
Ozturk, Kivilcim; Dow, Michelle; Carlin, Daniel E et al. (2018) The Emerging Potential for Network Analysis to Inform Precision Cancer Medicine. J Mol Biol 430:2875-2899
Yan, Jian; Chen, Shi-An A; Local, Andrea et al. (2018) Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 28:204-220
Antonova-Koch, Yevgeniya; Meister, Stephan; Abraham, Matthew et al. (2018) Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science 362:
Zarrinpar, Amir; Chaix, Amandine; Xu, Zhenjiang Z et al. (2018) Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun 9:2872
Cowell, Annie N; Istvan, Eva S; Lukens, Amanda K et al. (2018) Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359:191-199

Showing the most recent 10 out of 207 publications