Individuals with chronic conditions such as heart disease and diabetes show impaired glucose and fatty acid oxidation and diminished energetic states in various tissue/organ systems. This is due to alterations in the signaling, biochemical, and structural components of metabolic pathways [63-69]. For example, remodeling in failing hearts results in impaired ability to oxidize both fatty acids and glucose [66], due to a down regulation of enzymes involved in poxidation [70, 71] along with an impaired ability to utilize glucose due to suppression of glycolytic activity and decreased ability of the cardiomyocytes to take up glucose [72]. In the extreme, the work capacity of the heart is limited not by the availability of substrates or O2, but by the impaired ability to consume the available substrates [65]. As H. Taegtmeyer has put it, "...the heart fails in the midst of plenty" [73]. The goal of this scientific project is to understand the interactions among the transport and metabolic processes comprising energy metabolism at various biological scales (transporters/enzymes, mitochondria, cells, tissues/organs, whole-organism) in healthy and complex disease states. Specifically, models will account for the transport and metabolic characteristics of 5 rat strains identified in Section 1.3. The phenotypes associated with these strains are system properties that influence and are influenced by the metabolic state. Thus the metabolic modeling component of the VPR will be crucial to simulating complex traits associated with these strains. To test the robustness of the integrated metabolic model, the model will be used to simulate and predict physiological responses (e.g., substrate utilization and switching) to acetyl-CoA carboxylase 2 knock-out (ACC2(-/-)) which will be compared to measured physiological phenotypes. Since the metabolic inputs and outputs of all organs are coupled by transport through the cardiovascular system (CVS), the whole-body energy metabolism and solute transport models must be ultimately be coupled to the CVS models of Project 1.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-CBCB-2)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Ann Arbor
United States
Zip Code
Carlson, Brian E; Vigoreaux, Jim O; Maughan, David W (2014) Diffusion coefficients of endogenous cytosolic proteins from rabbit skinned muscle fibers. Biophys J 106:780-92
Pannala, V R; Bazil, J N; Camara, A K S et al. (2014) A mechanistic mathematical model for the catalytic action of glutathione peroxidase. Free Radic Res 48:487-502
Tangney, Jared R; Campbell, Stuart G; McCulloch, Andrew D et al. (2014) Timing and magnitude of systolic stretch affect myofilament activation and mechanical work. Am J Physiol Heart Circ Physiol 307:H353-60
Tewari, Shivendra; Parpura, Vladimir (2014) Data and model tango to aid the understanding of astrocyte-neuron signaling. Front Comput Neurosci 8:3
Vigueras, Guillermo; Roy, Ishani; Cookson, Andrew et al. (2014) Toward GPGPU accelerated human electromechanical cardiac simulations. Int J Numer Method Biomed Eng 30:117-34
Tewari, Shivendra G; Camara, Amadou K S; Stowe, David F et al. (2014) Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake. J Physiol 592:1917-30
Qureshi, M Umar; Vaughan, Gareth D A; Sainsbury, Christopher et al. (2014) Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomech Model Mechanobiol 13:1137-54
Pfeiffer, E R; Wright, A T; Edwards, A G et al. (2014) Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol 76:265-74
Neal, Maxwell L; Cooling, Michael T; Smith, Lucian P et al. (2014) A reappraisal of how to build modular, reusable models of biological systems. PLoS Comput Biol 10:e1003849
Smith, Amy F; Shipley, Rebecca J; Lee, Jack et al. (2014) Transmural variation and anisotropy of microvascular flow conductivity in the rat myocardium. Ann Biomed Eng 42:1966-77

Showing the most recent 10 out of 33 publications