Human biology depends on the way the human genome is expressed. Protein levels in cells rely on the fate of messenger RNA-how pre-mRNAs are spliced, how and when mRNAs are translated, and finally when mRNAs are degraded. Defects in these steps can lead to diseases ranging from inherited disorders to cancer. By their nature as RNA polymers, pre-mRNAs and mRNAs may contain secondary and tertiary structural elements that serve as regulators of mRNA abundance and protein synthesis. Despite the central importance of mRNA regulation in biology, there has not been a systems-level study of how pre-mRNA and mRNA structure controls mRNA fate in living cells. The Center for RNA Systems Biology will use new methods to establish a fundamental basis for understanding and predicting the control of mRNA fate due to RNA structure embedded in pre-mRNA and mRNA sequences. The Center will combine new in vivo chemical probing methods with control of the physical environment of cells to address the following Specific Aims: 1) Determine the roles of RNA structure in pre-mRNAs in controlling alternative splicing and their Relationship to human genetic variation. 2) Define mRNA structures that control translation initiation and protein synthesis in response to a cell's physical environment. 3) Map RNA structural regulation of miRNA-mediated turnover. Ultimately the goal of the Center is to develop maps of relationships between the placement of RNA structure in pre-mRNA or mRNA sequences and mRNA fate. These maps will provide many new insights into human biology and the mechanisms underlying genotypic variation and human disease.

Public Health Relevance

The Center's focus on the role of RNA structure in regulating how genes are expressed in humans will transform our understanding of human disease. Furthermore, the study of how human cells respond to their physical environment, as they would in tissues, will open new fields for understanding the basis for gene regulation. These studies will open up many new targets for potential therapeutic intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM102706-03
Application #
8733711
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Preusch, Peter
Project Start
2012-09-01
Project End
2017-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Miscellaneous
Type
Organized Research Units
DUNS #
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Smith, M Duane; Arake-Tacca, Luisa; Nitido, Adam et al. (2016) Assembly of eIF3 Mediated by Mutually Dependent Subunit Insertion. Structure 24:886-96
Nguyen, Duy P; Miyaoka, Yuichiro; Gilbert, Luke A et al. (2016) Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat Commun 7:12009
Dunn, Joshua G; Weissman, Jonathan S (2016) Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17:958
Oh, Sekyung; Flynn, Ryan A; Floor, Stephen N et al. (2016) Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget 7:28169-82
Choudhary, Krishna; Shih, Nathan P; Deng, Fei et al. (2016) Metrics for rapid quality control in RNA structure probing experiments. Bioinformatics 32:3575-3583
Adamson, Britt; Norman, Thomas M; Jost, Marco et al. (2016) A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell 167:1867-1882.e21
Lee, Amy S; Kranzusch, Philip J; Doudna, Jennifer A et al. (2016) eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 536:96-9
Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E et al. (2016) Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 5:
Iwasaki, Shintaro; Floor, Stephen N; Ingolia, Nicholas T (2016) Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature 534:558-61
Gonzalez, Tania L; Liang, Yan; Nguyen, Bao N et al. (2015) Tight regulation of plant immune responses by combining promoter and suicide exon elements. Nucleic Acids Res 43:7152-61

Showing the most recent 10 out of 33 publications