Our overall goal is to systematically define c/s-regulatory elements in mRNAs that control translation initiation under defined physiological conditions. While the sequence requirements for translation start codon selection have been studied for individual genes, a comprehensive understanding of the rules for start site selection is not known for the human transcriptome.
Our aims are to: A|m 1) Determine translation initiation site usage in human cells in defined physiological states.
Aim 2) Map mRNA structure in vivo and in vitro using chemical probing methods.
Aim 3) Determine the positioning of eukaryotic initiation factor elF3 on mRNAs in human cells.
Aim 4) Develop computational models for predicting start codon selection. Our efforts will initially focus on developing heuristic models for how start codons are selected in human cells. These models will combine the RNA structural information obtained in the above aims with phylogenetic parameters to increase the models'predictive power. As we build a knowledge base for human mRNA structural properties, we will incorporate principles of RNA structure into these models. Our ultimate goal will be to couple general principles of RNA structure to systems-level experimental constraints to enable the prediction of translation initiation patterns in human cells, using minimal new inputs for a given cell type, tissue, or physiological state.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM102706-03
Application #
8733716
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
City
Berkeley
State
CA
Country
United States
Zip Code
94704
McGlincy, Nicholas J; Ingolia, Nicholas T (2017) Transcriptome-wide measurement of translation by ribosome profiling. Methods 126:112-129
Jost, Marco; Chen, Yuwen; Gilbert, Luke A et al. (2017) Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Mol Cell 68:210-223.e6
Iwasaki, Shintaro; Ingolia, Nicholas T (2017) The Growing Toolbox for Protein Synthesis Studies. Trends Biochem Sci 42:612-624
Zubradt, Meghan; Gupta, Paromita; Persad, Sitara et al. (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14:75-82
Wright, Addison V; Liu, Jun-Jie; Knott, Gavin J et al. (2017) Structures of the CRISPR genome integration complex. Science 357:1113-1118
Lintner, Nathanael G; McClure, Kim F; Petersen, Donna et al. (2017) Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol 15:e2001882
Cate, Jamie H D (2017) Human eIF3: from 'blobology' to biological insight. Philos Trans R Soc Lond B Biol Sci 372:
Kostova, Kamena K; Hickey, Kelsey L; Osuna, Beatriz A et al. (2017) CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science 357:414-417
Li, Bo; Tambe, Akshay; Aviran, Sharon et al. (2017) PROBer Provides a General Toolkit for Analyzing Sequencing-Based Toeprinting Assays. Cell Syst 4:568-574.e7
Liu, S John; Horlbeck, Max A; Cho, Seung Woo et al. (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355:

Showing the most recent 10 out of 45 publications