The overarching aim of the Center is to provide a systems-level understanding for cellular decision-making focusing on the interrelated processes of cell proliferation, migration, and differentiation. Particularly, we will be focusing on how to develop and validate models that range from molecular single cell mechanisms to collective cell behavior. The center includes a research component with three synergistic projects, cores that will enrich systems biology research in Stanford, as well as an education component focusing on training graduate student and postdoctoral fellows in this emerging new field. We will also have an outreach effort to disseminate data sets and models and to invite researchers to participate in summer courses as well as to train in systems biology in Stanford. In the proposed research, we will focus on Collective Cell Proliferation by focusing on Xenopus laevis embryos and on primary human umbilical vein endothelial cells using novel biosensors developed in the participating laboratories. Our effort to understand Collective Cell Migration wil focus on mechanical models for collective migration based on novel insights into the propagation of force in 2-dimensional cell sheets. In our third effort to understand Collective Cel Differentiation we will be focusing on learning the rules by which cells collectively transition from proliferative to differentiated states using human induced pluripotent stem (IPS) cells, granule neuron precursors (GNP), adipocytes, and drosophila wing epithelial cells as models. Since neighboring cells tend to differentiate in a correlated fashion, we will seek to understand how cells coordinate differentiation by testing whether secreted factors and direct cell contact contribute to collective differentiation decisions. These research efforts will be augmented by the development of new perturbation and biosensor technologies that will enable us to validate models for these processes. The investigated biological projects share common regulatory designs, adding significant synergies that will enhance the change that significant new advances will be made in the proposed Center.

Public Health Relevance

The proposed work will elucidate fundamental regulatory mechanisms how cells divide, move and differentiate. These processes are critical in cancer, neurodegeneration and in many other diseases. Insights into the regulation of these processes may lead, with a longer term time horizon, to new types of therapies for these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
1P50GM107615-01
Application #
8573921
Study Section
Special Emphasis Panel (ZGM1-BBCB-9 (SB))
Program Officer
Brazhnik, Paul
Project Start
2013-09-30
Project End
2018-06-30
Budget Start
2013-09-30
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$2,297,000
Indirect Cost
$767,367
Name
Stanford University
Department
Biology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Hwang, Sunhee; Mruk, Karen; Rahighi, Simin et al. (2018) Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator. Nat Commun 9:4045
Bastounis, Effie E; Ortega, Fabian E; Serrano, Ricardo et al. (2018) A Multi-well Format Polyacrylamide-based Assay for Studying the Effect of Extracellular Matrix Stiffness on the Bacterial Infection of Adherent Cells. J Vis Exp :
Bastounis, Effie E; Yeh, Yi-Ting; Theriot, Julie A (2018) Matrix stiffness modulates infection of endothelial cells by Listeria monocytogenes via expression of cell surface vimentin. Mol Biol Cell 29:1571-1589
Gu, Bo; Swigut, Tomek; Spencley, Andrew et al. (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050-1055
Kudo, Takamasa; Jekni?, Stevan; Macklin, Derek N et al. (2018) Live-cell measurements of kinase activity in single cells using translocation reporters. Nat Protoc 13:155-169
Knapp, Benjamin D; Huang, Kerwyn Casey (2018) Translating the Physical Code of Life. Cell 174:253-255
Risom, Tyler; Langer, Ellen M; Chapman, Margaret P et al. (2018) Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nat Commun 9:3815
Faralla, Cristina; Bastounis, Effie E; Ortega, Fabian E et al. (2018) Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing. PLoS Pathog 14:e1007094
Gutzman, Jennifer H; Graeden, Ellie; Brachmann, Isabel et al. (2018) Basal constriction during midbrain-hindbrain boundary morphogenesis is mediated by Wnt5b and focal adhesion kinase. Biol Open 7:
Jacobs, Conor L; Badiee, Ryan K; Lin, Michael Z (2018) StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins. Nat Methods 15:523-526

Showing the most recent 10 out of 236 publications