The overarching aim of the Center is to provide a systems-level understanding for cellular decision-making focusing on the interrelated processes of cell proliferation, migration, and differentiation. Particularly, we will be focusing on how to develop and validate models that range from molecular single cell mechanisms to collective cell behavior. The center includes a research component with three synergistic projects, cores that will enrich systems biology research in Stanford, as well as an education component focusing on training graduate student and postdoctoral fellows in this emerging new field. We will also have an outreach effort to disseminate data sets and models and to invite researchers to participate in summer courses as well as to train in systems biology in Stanford. In the proposed research, we will focus on Collective Cell Proliferation by focusing on Xenopus laevis embryos and on primary human umbilical vein endothelial cells using novel biosensors developed in the participating laboratories. Our effort to understand Collective Cell Migration wil focus on mechanical models for collective migration based on novel insights into the propagation of force in 2-dimensional cell sheets. In our third effort to understand Collective Cel Differentiation we will be focusing on learning the rules by which cells collectively transition from proliferative to differentiated states using human induced pluripotent stem (IPS) cells, granule neuron precursors (GNP), adipocytes, and drosophila wing epithelial cells as models. Since neighboring cells tend to differentiate in a correlated fashion, we will seek to understand how cells coordinate differentiation by testing whether secreted factors and direct cell contact contribute to collective differentiation decisions. These research efforts will be augmented by the development of new perturbation and biosensor technologies that will enable us to validate models for these processes. The investigated biological projects share common regulatory designs, adding significant synergies that will enhance the change that significant new advances will be made in the proposed Center.

Public Health Relevance

The proposed work will elucidate fundamental regulatory mechanisms how cells divide, move and differentiate. These processes are critical in cancer, neurodegeneration and in many other diseases. Insights into the regulation of these processes may lead, with a longer term time horizon, to new types of therapies for these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM107615-02
Application #
8743222
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Lyster, Peter
Project Start
2013-09-30
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Stanford University
Department
Biology
Type
Schools of Medicine
DUNS #
City
Stanford
State
CA
Country
United States
Zip Code
94304
Atay, Oguzhan; Skotheim, Jan M (2017) Spatial and temporal signal processing and decision making by MAPK pathways. J Cell Biol 216:317-330
Shi, Zhen; Fujii, Kotaro; Kovary, Kyle M et al. (2017) Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide. Mol Cell 67:71-83.e7
Ouyang, Xiaohu; Panetta, Nicholas J; Talbott, Maya D et al. (2017) Hyaluronic acid synthesis is required for zebrafish tail fin regeneration. PLoS One 12:e0171898
Barnhart, Erin L; Allard, Jun; Lou, Sunny S et al. (2017) Adhesion-Dependent Wave Generation in Crawling Cells. Curr Biol 27:27-38
Eser, Umut; Chandler-Brown, Devon; Ay, Ferhat et al. (2017) Form and function of topologically associating genomic domains in budding yeast. Proc Natl Acad Sci U S A 114:E3061-E3070
Kowalik, Lukasz; Chen, James K (2017) Illuminating developmental biology through photochemistry. Nat Chem Biol 13:587-598
Kang, Hyunook; Bang, Injin; Jin, Kyeong Sik et al. (2017) Structural and functional characterization of Caenorhabditis elegans ?-catenin reveals constitutive binding to ?-catenin and F-actin. J Biol Chem 292:7077-7086
Cesar, Spencer; Huang, Kerwyn Casey (2017) Thinking big: the tunability of bacterial cell size. FEMS Microbiol Rev 41:672-678
Koslover, Elena F; Chan, Caleb K; Theriot, Julie A (2017) Cytoplasmic Flow and Mixing Due to Deformation of Motile Cells. Biophys J 113:2077-2087
Anderson, Graham A; Gelens, Lendert; Baker, Julie C et al. (2017) Desynchronizing Embryonic Cell Division Waves Reveals the Robustness of Xenopus laevis Development. Cell Rep 21:37-46

Showing the most recent 10 out of 138 publications