Precision Phenomics to Personalize Drug Therapy The promise of genomic medicine is the personalization of therapeutics based on one's genetic makeup. Current methods to identify genomic variation underlying adverse drug reactions (ADRs) and to predict drug effects progress slowly and lack disease-neutral approaches. In addition, the cost of new drug discovery is increasing rapidly, largely due to ADRs and efficacy failures. Thus, repurposing old drugs for new indications offer advantages of both safety and reduced development costs. We will develop and apply phenome-wide, medication-wide approaches to dense, longitudinal Electronic Health Record (EHR) data linked to DNA to discover genetic variants associated with ADRs, predict new indications for drugs, and identify new phenotype associations for genetic variants known to impact drug response.
In Specific Aim 1, we will genotype 30,000 individuals on a genome-wide array enriched with variants underlying cardiac electrical activity, drug metabolism, HLA variants, and drug targets. Combining these data with the extant genotypes in our institutional biobank BioVU will result in population of 66,000 individuals with dense genome-wide genotype data. We will perform phenome-wide associations studies (PheWAS, a methodology we have developed) for genes and variants identified in Projects 1 and 2 and known pharmacovariants.
In Specific Aim 2, we will use phenome-wide approaches to repurpose existing medications and predict side effects. Building on methods that successfully replicated known apremilast (PDE4 inhibitor used for autoimmune disease) indications and suggested new, biologically plausible repurposing in other diseases, we will perform PheWAS on drug targets for nearly all currently used medications as a tool to identify new disease indications and side effects. Existing indications will serve as anchors to orient results toward new efficacies and possible side effects. Then, we will prioritize new indications for further analysis using network analysis and systematic evidence reviews.
In Specific Aim 3, we will use natural language processing and coded EHR data to identify ADRs from EHR data. Specific ADRs assessed will include diseases, laboratory abnormalities, cutaneous hypersensitivity reactions, and electrocardiographic traits. Our methods will extract both provider-identified ADRs as well as find known clinical events documented but not explicitly recorded as an ADR. Then, we will discover genetic variants predicting the ADRs. In both Specific Aims 2 and 3, we will replicate prioritized novel associations in external EHR-linked biobanks and using candidate gene sequencing or specific HLA 4-digit typing of validated phenotypes. The results of this study will be to dramatically increase the catalog of genetic predictors of drug response and to create a library of potential repurposing for nearly all medications.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
1P50GM115305-01
Application #
8934767
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
2016-04-29
Budget Start
2015-07-01
Budget End
2016-04-29
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37240
Devchand, Misha; Urbancic, Karen F; Khumra, Sharmila et al. (2018) Pathways to improved antibiotic allergy and antimicrobial stewardship practice: The validation of a beta-lactam antibiotic allergy assessment tool. J Allergy Clin Immunol Pract :
Fontana, Robert John; Cirulli, Elizabeth Theresa; Gu, Jiezhun et al. (2018) The role of HLA-A*33:01 in patients with cholestatic hepatitis attributed to terbinafine. J Hepatol 69:1317-1325
Hanson, Derek J; Hill, Joshua A; Koelle, David M (2018) Advances in the Characterization of the T-Cell Response to Human Herpesvirus-6. Front Immunol 9:1454
Kroncke, Brett M; Glazer, Andrew M; Smith, Derek K et al. (2018) SCN5A (NaV1.5) Variant Functional Perturbation and Clinical Presentation: Variants of a Certain Significance. Circ Genom Precis Med 11:e002095
Stone Jr, Cosby A; Liu, Yiwei; Relling, Mary V et al. (2018) Immediate Hypersensitivity to Polyethylene Glycols and Polysorbates: More Common Than We Have Recognized. J Allergy Clin Immunol Pract :
Chun, Young Wook; Durbin, Matthew D; Hong, Charles C (2018) Genome Editing and Induced Pluripotent Stem Cell Technologies for Personalized Study of Cardiovascular Diseases. Curr Cardiol Rep 20:38
Yang, Tao; Meoli, David F; Moslehi, Javid et al. (2018) Inhibition of the ?-Subunit of Phosphoinositide 3-Kinase in Heart Increases Late Sodium Current and Is Arrhythmogenic. J Pharmacol Exp Ther 365:460-466
Goldstein, Jeffery A; Bastarache, Lisa A; Denny, Joshua C et al. (2018) Calcium channel blockers as drug repurposing candidates for gestational diabetes: Mining large scale genomic and electronic health records data to repurpose medications. Pharmacol Res 130:44-51
Manolio, Teri A; Hutter, Carolyn M; Avigan, Mark et al. (2018) Research Directions in Genetic Predispositions to Stevens-Johnson Syndrome / Toxic Epidermal Necrolysis. Clin Pharmacol Ther 103:390-394
Weiskopf, Daniela; Grifoni, Alba; Arlehamn, Cecilia S Lindestam et al. (2018) Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 339 adults from Managua, Nicaragua. Hum Immunol 79:1-2

Showing the most recent 10 out of 114 publications