Improving prediction of drug action Drugs are variably effective and cause adverse drug reactions (ADRs). ADRs extract major costs at individual and societal levels, leading to medication non-compliance, inefficacy, toxicity, hospitalization, and death. They can be on-target or off-target, they occur across the spectrum of therapies, and they have an important, and increasing, impact not only on the way in which drugs are used in individual subjects and across healthcare systems but on the way in which new candidate molecules are developed. This Center of Excellence has as its major goal the elucidation of new mechanisms underlying variability in drug action and ADRs. We bring to this effort a unique collection of new tools and resources that enable us to confidently predict rapid development of entirely new classes of knowledge that will be a paradigm-shift from current norms of slow, incremental progress. Project 1 focuses on QT interval prolongation by drugs, a major cause for drug relabeling and withdrawals over the last two decades. Conventional wisdom has focused on the drug block of the HERG channel as the major mechanism, but we present compelling data that other pathways play a critical role. We will integrate the results of our previous genomic, molecular, cellular, and clinical studies in the field, exciting new data on the role of P3 kinase in this ADR, and the capability of generating cardiomyocytes from individuals whose drug response phenotypes we have established to develop new paradigms to identity risk in new drug candidates and across patient populations. Project 2 focuses on immunologically-mediated ADRs, and uses a unique resource of cells and DNA from patients with drug hypersensitivity or drug tolerance in the face of a specific HLA risk allele to define associations between HLA alleles, specific T-cell receptor usage and severe T-cell mediated drug hypersensitivity. Our goal is to test a new heterologous immunity model of drug hypersensitivity to explain this phenotypic variability and inform the development of new predictive models. Project 3 applies the new technology of phenome-wide scanning that we have pioneered to a large cohort of subjects with genomic and longitudinal electronic medical record data to broadly repurpose drugs for new indications and refine prediction of long QT-related, HLA-related, and other ADRs. The results of work in the Center will thus advance our long term goal of improving the outcome of drug therapy by reducing the burden of ADRs, improving prediction in an individual subject, repurposing available drugs, and providing new tools to the drug development process to reduce ADR risk.

Public Health Relevance

Drugs are often ineffective and adverse drug reactions (ADRs) cause medication non-compliance, toxicity, hospitalization, and death. ADRs can be on-target or off-target, they occur across the spectrum of therapies, and they have an important, and increasing, impact not only on the way in which drugs are used in individual subjects but on the way in which new candidate molecules are developed. This Center of Excellence has as its major goal the elucidation of new mechanisms underlying variable drug actions with the goals of improving therapy for individual subjects, providing new models for evaluating risk of new candidate molecules, and repurposing existing drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
6P50GM115305-02
Application #
9262466
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Long, Rochelle M
Project Start
2015-07-01
Project End
2020-06-30
Budget Start
2016-04-30
Budget End
2016-06-30
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232
Devchand, Misha; Urbancic, Karen F; Khumra, Sharmila et al. (2018) Pathways to improved antibiotic allergy and antimicrobial stewardship practice: The validation of a beta-lactam antibiotic allergy assessment tool. J Allergy Clin Immunol Pract :
Fontana, Robert John; Cirulli, Elizabeth Theresa; Gu, Jiezhun et al. (2018) The role of HLA-A*33:01 in patients with cholestatic hepatitis attributed to terbinafine. J Hepatol 69:1317-1325
Hanson, Derek J; Hill, Joshua A; Koelle, David M (2018) Advances in the Characterization of the T-Cell Response to Human Herpesvirus-6. Front Immunol 9:1454
Kroncke, Brett M; Glazer, Andrew M; Smith, Derek K et al. (2018) SCN5A (NaV1.5) Variant Functional Perturbation and Clinical Presentation: Variants of a Certain Significance. Circ Genom Precis Med 11:e002095
Stone Jr, Cosby A; Liu, Yiwei; Relling, Mary V et al. (2018) Immediate Hypersensitivity to Polyethylene Glycols and Polysorbates: More Common Than We Have Recognized. J Allergy Clin Immunol Pract :
Chun, Young Wook; Durbin, Matthew D; Hong, Charles C (2018) Genome Editing and Induced Pluripotent Stem Cell Technologies for Personalized Study of Cardiovascular Diseases. Curr Cardiol Rep 20:38
Yang, Tao; Meoli, David F; Moslehi, Javid et al. (2018) Inhibition of the ?-Subunit of Phosphoinositide 3-Kinase in Heart Increases Late Sodium Current and Is Arrhythmogenic. J Pharmacol Exp Ther 365:460-466
Goldstein, Jeffery A; Bastarache, Lisa A; Denny, Joshua C et al. (2018) Calcium channel blockers as drug repurposing candidates for gestational diabetes: Mining large scale genomic and electronic health records data to repurpose medications. Pharmacol Res 130:44-51
Manolio, Teri A; Hutter, Carolyn M; Avigan, Mark et al. (2018) Research Directions in Genetic Predispositions to Stevens-Johnson Syndrome / Toxic Epidermal Necrolysis. Clin Pharmacol Ther 103:390-394
Weiskopf, Daniela; Grifoni, Alba; Arlehamn, Cecilia S Lindestam et al. (2018) Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 339 adults from Managua, Nicaragua. Hum Immunol 79:1-2

Showing the most recent 10 out of 114 publications