Precision Phenomics to Personalize Drug Therapy The promise of genomic medicine is the personalization of therapeutics based on one's genetic makeup. Current methods to identify genomic variation underlying adverse drug reactions (ADRs) and to predict drug effects progress slowly and lack disease-neutral approaches. In addition, the cost of new drug discovery is increasing rapidly, largely due to ADRs and efficacy failures. Thus, repurposing old drugs for new indications offer advantages of both safety and reduced development costs. We will develop and apply phenome-wide, medication-wide approaches to dense, longitudinal Electronic Health Record (EHR) data linked to DNA to discover genetic variants associated with ADRs, predict new indications for drugs, and identify new phenotype associations for genetic variants known to impact drug response.
In Specific Aim 1, we will genotype 30,000 individuals on a genome-wide array enriched with variants underlying cardiac electrical activity, drug metabolism, HLA variants, and drug targets. Combining these data with the extant genotypes in our institutional biobank BioVU will result in population of 66,000 individuals with dense genome-wide genotype data. We will perform phenome-wide associations studies (PheWAS, a methodology we have developed) for genes and variants identified in Projects 1 and 2 and known pharmacovariants.
In Specific Aim 2, we will use phenome-wide approaches to repurpose existing medications and predict side effects. Building on methods that successfully replicated known apremilast (PDE4 inhibitor used for autoimmune disease) indications and suggested new, biologically plausible repurposing in other diseases, we will perform PheWAS on drug targets for nearly all currently used medications as a tool to identify new disease indications and side effects. Existing indications will serve as anchors to orient results toward new efficacies and possible side effects. Then, we will prioritize new indications for further analysis using network analysis and systematic evidence reviews.
In Specific Aim 3, we will use natural language processing and coded EHR data to identify ADRs from EHR data. Specific ADRs assessed will include diseases, laboratory abnormalities, cutaneous hypersensitivity reactions, and electrocardiographic traits. Our methods will extract both provider-identified ADRs as well as find known clinical events documented but not explicitly recorded as an ADR. Then, we will discover genetic variants predicting the ADRs. In both Specific Aims 2 and 3, we will replicate prioritized novel associations in external EHR-linked biobanks and using candidate gene sequencing or specific HLA 4-digit typing of validated phenotypes. The results of this study will be to dramatically increase the catalog of genetic predictors of drug response and to create a library of potential repurposing for nearly all medications.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM115305-03
Application #
9100799
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232
Trubiano, Jason A; Strautins, Kaija; Redwood, Alec J et al. (2018) The Combined Utility of Ex Vivo IFN-? Release Enzyme-Linked ImmunoSpot Assay and In Vivo Skin Testing in Patients with Antibiotic-Associated Severe Cutaneous Adverse Reactions. J Allergy Clin Immunol Pract 6:1287-1296.e1
Urbancic, K F; Ierino, F; Phillips, E et al. (2018) Taking the challenge: A protocolized approach to optimize Pneumocystis pneumonia prophylaxis in renal transplant recipients. Am J Transplant 18:462-466
Trubiano, Jason A; Douglas, Abby P; Goh, Michelle et al. (2018) The safety of antibiotic skin testing in severe T-cell-mediated hypersensitivity of immunocompetent and immunocompromised hosts. J Allergy Clin Immunol Pract :
Stone Jr, Cosby A; Hemler, Jonathan A; Commins, Scott P et al. (2018) Reply. J Allergy Clin Immunol 141:1957-1958
Cook, Kathryn M; Gillon, Jessica; Grisso, Alison G et al. (2018) Incidence of Nephrotoxicity Among Pediatric Patients Receiving Vancomycin With Either Piperacillin-Tazobactam or Cefepime: A Cohort Study. J Pediatric Infect Dis Soc :
Roden, Dan M; Van Driest, Sara L; Mosley, Jonathan D et al. (2018) Benefit of Preemptive Pharmacogenetic Information on Clinical Outcome. Clin Pharmacol Ther 103:787-794
Roden, Dan M (2018) Growing Pains in Cardiovascular Genetics. Circulation 138:1206-1209
Wei, Wei-Qi; Li, Xiaohui; Feng, Qiping et al. (2018) LPA Variants Are Associated With Residual Cardiovascular Risk in Patients Receiving Statins. Circulation 138:1839-1849
Trubiano, Jason A; Grayson, M Lindsay; Thursky, Karin A et al. (2018) How antibiotic allergy labels may be harming our most vulnerable patients. Med J Aust 208:469-470
Rhoades, Seth D; Bastarache, Lisa; Denny, Joshua C et al. (2018) Pulling the covers in electronic health records for an association study with self-reported sleep behaviors. Chronobiol Int 35:1702-1712

Showing the most recent 10 out of 114 publications