Approximately 15% of women sustain pelvic muscle injuries during vaginal birth, demonstrable through magnetic resonance (MR) imaging. Our geometric model suggests the pelvic floor muscles stretch up to 3.3 times their original length during the second stage of birth. Based on MR imaging, histological, studies, and biomechanical modeling, when injury occurs, we hypothesize an initial rupture of the pubic attachment ofthe pubovisceral muscle (Type 1 injury), in some women followed by an avulsion of the pubic attachment of the arcus tendineus levator ani (Type 2 injury). We seek funds to characterize the variation of tissue in these injury zones and document their failure loads.
AIM 1 will characterize the morphology and histology of pubovisceral and arcus tendineus tissues, bi-axial material properties where appropriate, and uniaxial failure properties in 30 cadavers. In 20 volunteers, we will use ultrasound elastography to characterize the effect of pregnancy on perineal body elasticity.
AIM 2 will use Aim 1 data to refine a subject-specific, 3-D finite element viscohyperelastic biomechanical model of the second stage of labor from Station +2 on. We will test the above hypotheses with regard to the sequence of Type 1/Type 2 injuries, and run parametric studies to determine the biomechanical factors that increase or decrease the risk of Type 1 and Type 2 injuries. We will validate the model with stereophotogrammetric measurements of perineal descent in 10 laboring women. Since maternal exhaustion is a major risk for instrumented delivery and levator muscle injuries, in AIM 3 we will use a repeated measures design to quantify the outcomes in 40 healthy non-pregnant volunteers between 21 and 30 years of age to study the energetic cost of Valsalva pushing with and without (a) maximal arm and (b) arm and thigh muscle isometric contractions. These observations will yield insights into the factors associated with the greatest risk for injury, and should lead to better methods of preventing these injuries.

Public Health Relevance

This proposal combines experimental and theoretical methods to address the knowledge gap of how, when, and why injuries to the pelvic floor muscles occur in women during vaginal birth. Such injuries are linked to the development of pelvic floor dysfunction, including genital prolapse and incontinence, both of which restrict women's employment, enjoyment and health-promoting exercise later in life. Insights will help lead to better methods for preventing these injuries in the first place.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center (P50)
Project #
5P50HD044406-13
Application #
8720540
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
City
Ann Arbor
State
MI
Country
United States
Zip Code
DeLancey, John O L (2017) ""Mommy, how will the baby get out of your tummy? Will it hurt you?"" Am J Obstet Gynecol 217:110-111
Harris, John A; Sammarco, Anne G; Swenson, Carolyn W et al. (2017) Are perioperative bundles associated with reduced postoperative morbidity in women undergoing benign hysterectomy? Retrospective cohort analysis of 16,286 cases in Michigan. Am J Obstet Gynecol 216:502.e1-502.e11
Sammarco, Anne G; Nandikanti, Lahari; Kobernik, Emily K et al. (2017) Interactions among pelvic organ protrusion, levator ani descent, and hiatal enlargement in women with and without prolapse. Am J Obstet Gynecol 217:614.e1-614.e7
Arenholt, Louise T S; Pedersen, Bodil Ginnerup; Glavind, Karin et al. (2017) Paravaginal defect: anatomy, clinical findings, and imaging. Int Urogynecol J 28:661-673
Reiner, Caecilia S; Williamson, Tom; Winklehner, Thomas et al. (2017) The 3D Pelvic Inclination Correction System (PICS): A universally applicable coordinate system for isovolumetric imaging measurements, tested in women with pelvic organ prolapse (POP). Comput Med Imaging Graph 59:28-37
Swenson, Carolyn W; Smith, Tovia M; Luo, Jiajia et al. (2017) Intraoperative cervix location and apical support stiffness in women with and without pelvic organ prolapse. Am J Obstet Gynecol 216:155.e1-155.e8
Fairchild, Pamela S; Kamdar, Neil S; Rosen, Emily R et al. (2017) Ligament shortening compared to vaginal colpopexy at the time of hysterectomy for pelvic organ prolapse. Int Urogynecol J 28:899-905
Zielinski, Ruth; Kane Low, Lisa; Smith, Abigail R et al. (2017) Body after baby: a pilot survey of genital body image and sexual esteem following vaginal birth. Int J Womens Health 9:189-198
DeLancey, John O L (2016) What's new in the functional anatomy of pelvic organ prolapse? Curr Opin Obstet Gynecol 28:420-9
Berger, Mitchell B; Khandwala, Nikhila; Fenner, Dee E et al. (2016) Colovaginal Fistulas: Presentation, Evaluation, and Management. Female Pelvic Med Reconstr Surg 22:355-8

Showing the most recent 10 out of 118 publications