Intracellular Ca (Cai) overload is a well-known arrhythmogenic factor which contributes to focal arrhythmias by promoting automaticity and triggered activity, and to reentry by facilitating cellular uncoupling and slow conduction. As a sequela of myocardial ischemia and reperfusion, Cai overload contributes to cellular injury and arrhythmias, including ventricular fibrillation. However, the cellular mechanisms responsible for Cai overload during ischemia/reperfusion remain incompletely understood. The objective of this proposal is to characterize the subcellular mechanisms by which metabolic inhibition and components of the ischemia environment alter Cai regulation in isolated ventricular myocytes. Cai (using fura-2), membrane current and voltage, and cell shortening will be monitored simultaneously in isolated rabbit and guinea pig ventricular myocytes under whole cell patch clamp conditions during exposure to metabolic inhibitors (combined or selective inhibition of glycolysis and oxidative metabolism) and to various components of the ischemic environment (e.g. oxygen free radicals and amphiphiles). Using a rapid extracellular solution exchange device to facilitate pharmacologic interventions and ionic substitutions, we will characterize in detail the effects of these interventions on individual components of excitation-contraction coupling responsible for regulating Cai, including the Ca current (L and T types), Na-Ca exchange, the sarcoplasmic reticulum, mitochondria and the sarcolemmal Ca pump. We will also perform studies in giant excised membrane patches to assess the effects of components of the ischemic environment on Na-Ca exchange. A second major goal is to explore the mechanisms by which Cai overload causes arrhythmias. In particular, we will test a hypothesis predicted from the computer simulations of the cardiac action potential described in Project 3; namely that, by delaying or accelerating diastolic depolarization, delayed afterdepolarizations due to Cai overload are capable of producing a chaotic arrhythmia in a single myocyte. If a chaotic arrhythmia can be produced in the isolated myocyte, it may be amenable to 'chaos control' using the pacing algorithm described in Project 3, which will allow us to study the mechanisms of chaos control at a cellular and subcellular level using patch-clamp and fluorescent indicator techniques. These studies will provide important new information about pathogenesis of abnormal Cai regulation relevant to myocardial ischemia/reperfusion, and its arrhythmogenic consequences.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
1P50HL052319-01
Application #
3737263
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
119132785
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
de Diego, Carlos; Chen, Fuhua; Xie, Yuanfang et al. (2011) Anisotropic conduction block and reentry in neonatal rat ventricular myocyte monolayers. Am J Physiol Heart Circ Physiol 300:H271-8
Liu, Yen-Bin; Lee, Yuan-Teh; Pak, Hui-Nam et al. (2009) Effects of simvastatin on cardiac neural and electrophysiologic remodeling in rabbits with hypercholesterolemia. Heart Rhythm 6:69-75
Swissa, Moshe; Zhou, Shengmei; Tan, Alex Y et al. (2008) Atrial sympathetic and parasympathetic nerve sprouting and hyperinnervation induced by subthreshold electrical stimulation of the left stellate ganglion in normal dogs. Cardiovasc Pathol 17:303-8
de Diego, Carlos; Chen, Fuhua; Xie, Lai-Hua et al. (2008) Cardiac alternans in embryonic mouse ventricles. Am J Physiol Heart Circ Physiol 294:H433-40
Wu, Tsu-Juey; Lin, Shien-Fong; Hsieh, Yu-Cheng et al. (2008) Early recurrence of ventricular fibrillation after successful defibrillation during prolonged global ischemia in isolated rabbit hearts. J Cardiovasc Electrophysiol 19:203-10
de Diego, Carlos; Pai, Rakesh K; Dave, Amish S et al. (2008) Spatially discordant alternans in cardiomyocyte monolayers. Am J Physiol Heart Circ Physiol 294:H1417-25
Weiss, James N (2008) Beyond the implantable cardioverter-defibrillator: are we making progress? Heart Rhythm 5:S45-7
Hayashi, Hideki; Shiferaw, Yohannes; Sato, Daisuke et al. (2007) Dynamic origin of spatially discordant alternans in cardiac tissue. Biophys J 92:448-60
Tan, Alex Y; Chen, Peng-Sheng; Chen, Lan S et al. (2007) Autonomic nerves in pulmonary veins. Heart Rhythm 4:S57-60
Chen, Peng-Sheng; Tan, Alex Y (2007) Autonomic nerve activity and atrial fibrillation. Heart Rhythm 4:S61-4

Showing the most recent 10 out of 199 publications