One of the most consistent and replicated postmortem findings in schizophrenia is the reduced expression of the mRNA encoding the 67 kD isoform of glutamic acid decarboxylase (GAD67), the enzyme principally responsible for the synthesis of GABA. A central hypothesis of the Center is that disturbances in GABA neurotransmission play a key role in the information processing impairments observed in schizophrenia. These impairments represent a prominent and disabling feature of schizophrenia and a strong predictor of functional outcome. Thus, understanding the pathophysiologic mechanisms underlying cognitive impairments has become a critical focus in the development of novel therapeutics for the illness. However, to date, there is no direct, in vivo evidence that GABA function is altered in schizophrenia or that the GABA abnormalities observed in postmortem studies are linked to functional impairments in this illness. Consequently, the goal of this project is to develop and validate a methodology for exploring, in vivo, the evidence that GABA transmission is broadly impaired, across cortical brain regions, in subjects with schizophrenia. This project will (1) validate the use of [11C]flumazenil PET to detect changes in extracellular GABA levels resulting from the administration of tiagabine (a drug which inhibits the reuptake of GABA by blocking the GABA transporter, GAT1) and (2) examine tiagabine-induced changes in GABA levels in cortical regions in first-episode, antipsychotic-naTve, schizophrenia subjects (FEAN-S) compared with healthy controls. We predict that schizophrenia will be associated with a deficit in the ability to increase extracellular GABA levels in response to tiagabine when measured in vivo, using PET. All subjects will participate in Project 4-Phillips which will create a multi-modal dataset permitting us to explore the existence of a number of relationships predicted by the overall model of this Center. We will test the hypothesis that, in FEAN-S subjects, deficits in the ability to increase GABA levels, as indicated by blunting of the change in [11C]flumazenil binding in response to tiagabine, will be associated with impaired gamma oscillatory activity as measured by EEC, and decreased fMRI BOLD signal, during a cognitive control task, and that the level of cognitive impairment will be inversely correlated with the ability to increase GABA levels. This project will provide a key link between the postmortem studies of Project 1-Lewis and the clinical studies outlined in Project 4-Phillips. It will allow us to directly test the hypothesis that GABA transmission is reduced in schizophrenia (Project 1-Lewis) and, in combination with data from Project 4-Phillips, determine if reduced GABA is associated with the oscillation and fMRI disturbances observed in vivo. The methods developed through this project will thus provide a innovative biomarker that can be used to monitor the effects of novel therapeutic drugs in schizophrenia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH084053-05
Application #
8376061
Study Section
Special Emphasis Panel (ZMH1-ERB-S)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$278,172
Indirect Cost
$126,954
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Kimoto, Sohei; Glausier, Jill R; Fish, Kenneth N et al. (2016) Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophr Bull 42:396-405
Lewis, David A; Glausier, Jill R (2016) Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. Nebr Symp Motiv 63:31-75
Fromer, Menachem; Roussos, Panos; Sieberts, Solveig K et al. (2016) Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 19:1442-1453
Lizano, Paulo L; Keshavan, Matcheri S; Tandon, Neeraj et al. (2016) Angiogenic and immune signatures in plasma of young relatives at familial high-risk for psychosis and first-episode patients: A preliminary study. Schizophr Res 170:115-22
Teel, Chen; Park, Taeyoung; Sampson, Allan R (2015) EM Estimation for Finite Mixture Models with Known Mixture Component Size. Commun Stat Simul Comput 44:1545-1556
Kimoto, Sohei; Zaki, Mark M; Bazmi, H Holly et al. (2015) Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene. JAMA Psychiatry 72:747-56
Crowder, Erin A; Olson, Carl R (2015) Macaque monkeys experience visual crowding. J Vis 15:14
Frankle, W Gordon; Cho, Raymond Y; Prasad, Konasale M et al. (2015) In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am J Psychiatry 172:1148-59
Hoftman, Gil D; Volk, David W; Bazmi, H Holly et al. (2015) Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance. Schizophr Bull 41:180-91
Cho, Raymond Y; Walker, Christopher P; Polizzotto, Nicola R et al. (2015) Development of sensory gamma oscillations and cross-frequency coupling from childhood to early adulthood. Cereb Cortex 25:1509-18

Showing the most recent 10 out of 92 publications