The central hypothesis of this Center posits that a distinctive pattern of molecular alterations in subsets of GABA neurons gives rise to disturbances in cortical network oscillations that underlie the information processing deficits of schizophrenia. Disturbances in markers of cortical GABA neurotransmission are common in schizophrenia and are most prominent in two types of GABA neurons: parvalbumin-positive (PV), fast-spiking neurons and somatostatin-positive (SST), low-threshold spiking neurons. PV and SST cells each form networks with neurons of the same type that are thought to play central roles in the generation of gamma (30-80 Hz) and theta (4-7 Hz) oscillations, respectively, both of which are disturbed in subjects with schizophrenia. Network oscillations depend, at least in part, on 3 physiological properties: 1) the strength [i.e., inhibitory post-synaptic current (IPSC) amplitude] of GABA neurotransmission as determined by both pre- and post-synaptic factors;2) the kinetics (i.e., IPSC duration) of GABA neurotransmission as determined principally by the subunit composition of post-synaptic GABA-A receptors;and 3) the nature of the resulting inhibition (i.e., shunting or hyperpolarizing) as determined by chloride ion flow when GABA-A receptors are activated. Each of these physiological features is, in turn, dependent upon the expression of particular sets of gene products. Consequently, we hypothesize that the alterations in gamma and theta oscillations in schizophrenia reflect cell type-specific disturbances in the gene products that influence the strength, kinetics or nature of GABA-mediated inhibition. Studies in postmortem human brain, using the dorsolateral prefrontal cortex (DLPFC) as a prototypic cortical region affected in schizophrenia, will be conducted to determine if 1) the presynaptic strength of GABA neurotransmission in schizophrenia is impaired due to deficits in the amount of GAD67 protein available to synthesize GABA in PV and SST neurons;2) if cell type-specific alterations in the expression of a1 and a2 GABA-A receptor subunits disrupt the kinetics of GABA neurotransmission in schizophrenia;and 3) if shifts in the expression of chloride transporters in schizophrenia disrupt the shunting inhibitory input to GABA neurons and/or the hyperpolarizing inhibitory input to pyramidal cells required for robust oscillations. The proposed studies are both methodologically and conceptually innovative, and these investigations depend upon and inform the studies proposed in other projects in this Center. Thus, the outcomes of the proposed studies are likely to be highly informative regarding both the disease mechanisms underlying oscillatory and information processing deficits in schizophrenia and in identifying novel molecular targets for treating these deficits.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
3P50MH084053-05S1
Application #
8500447
Study Section
Special Emphasis Panel (ZMH1-ERB-S)
Project Start
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$51,864
Indirect Cost
$7,919
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Lizano, Paulo L; Yao, Jeffrey K; Tandon, Neeraj et al. (2017) Association of sFlt-1 and worsening psychopathology in relatives at high risk for psychosis: A longitudinal study. Schizophr Res 183:75-81
Agrawal, A; Chou, Y-L; Carey, C E et al. (2017) Genome-wide association study identifies a novel locus for cannabis dependence. Mol Psychiatry :
Mancuso, Nicholas; Shi, Huwenbo; Goddard, Pagé et al. (2017) Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits. Am J Hum Genet 100:473-487
Jasinska, Anna J; Zelaya, Ivette; Service, Susan K et al. (2017) Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate. Nat Genet 49:1714-1721
Lewis, David A; Glausier, Jill R (2016) Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. Nebr Symp Motiv 63:31-75
Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika et al. (2016) Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons. Schizophr Bull 42:992-1002
Lizano, Paulo L; Keshavan, Matcheri S; Tandon, Neeraj et al. (2016) Angiogenic and immune signatures in plasma of young relatives at familial high-risk for psychosis and first-episode patients: A preliminary study. Schizophr Res 170:115-22
Li, Ming; Jaffe, Andrew E; Straub, Richard E et al. (2016) A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med 22:649-56
Kimoto, Sohei; Glausier, Jill R; Fish, Kenneth N et al. (2016) Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophr Bull 42:396-405
Fromer, Menachem; Roussos, Panos; Sieberts, Solveig K et al. (2016) Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 19:1442-1453

Showing the most recent 10 out of 98 publications