This is an application for a new Conte Center for Schizophrenia Research based at the New York University School of Medicine (NYUSoM) and the affiliated Nathan Kline Institute for Psychiatric Research (NKI). Schizophrenia (SZ) is associated with sensory processing deficits that represent a core, but understudied, connponent of the disorder. In the auditory system, patients show deficits in basic processes such as tone matching and auditory mismatch negativity (MMN) generation. In the visual system, patients show deficits in processes such as contrast gain and integration that contribute to higher order impairments in processes such as object recognition and face recognition. Sensory deficits may relate specifically to impairments in Nmethyl- D-aspartate (NMDA) receptor-mediated neurotransmission, and are especially amenable to translational investigation using human and animal models. The Center consists of 6 projects and 3 cores, which build from pre-existing collaborations among Center investigators. Projects 1, 2 and 4 are based at NKI/NYSoM and utilize human (Javitt) and primate (Schroeder) neurophysiological, and human postmortem/laser capture microscopy/gene array (Ginsberg/Smiley) approaches to the study of sensory cortical dysfunction and impaired functional connectivity in SZ. Project 3 (Hlllyard) is based at UCSD and investigates modulatory processes underlying normal visual function. Project 5 (Cornblatt) is based at Zucker Hillside Hospital and investigates sensory processing dysfunction within the SZ prodrome. Finally, Project 6 (Weiser) is based at Sheba Hospital/Tel Aviv University and evaluates effectiveness of sarcosine (N-methylglycine), a naturally occurring NMDA agonist not currently available in the US. Cores are devoted to administration (Javitt), patient recruitment/assessment (Butler) and data management/biostatistics (Robinson/Petkova). Although traditional models of SZ focus on dopamine, more recent models focus on underlying glutamatergic dysfunction, and have received support from neurogenetic, imaging, and treatment studies, as well as challenge studies with putative NMDA antagonists. The overall goal of the Center is to develop new assessment and intervention approaches for schizophrenia based upon glutamatergic models.

Public Health Relevance

Schizophrenia is a major mental disorder that affects approximately 1% of the population worldwide. Current medications significantly control symptoms of schizophrenia, but are relatively ineffective in treating underlying neurocognitive deficits or in modifying neuro-physiological markers of underlying brain dysfunction. The present Center focuses on alternative neurochemical conceptualizations of schizophrenia, and development of novel models and methods for brain assessment and intervention.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-F (01))
Program Officer
Zalcman, Steven J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Schools of Medicine
New York
United States
Zip Code
Ding, Yulong; Martinez, Antigona; Qu, Zhe et al. (2014) Earliest stages of visual cortical processing are not modified by attentional load. Hum Brain Mapp 35:3008-24
Brunoni, Andre R; Shiozawa, Pedro; Truong, Dennis et al. (2014) Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis. Expert Rev Med Devices 11:383-94
Pitts, Michael A; Padwal, Jennifer; Fennelly, Daniel et al. (2014) Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness. Neuroimage 101:337-50
Merkel, Christian; Stoppel, Christian M; Hillyard, Steven A et al. (2014) Spatio-temporal patterns of brain activity distinguish strategies of multiple-object tracking. J Cogn Neurosci 26:28-40
Revheim, Nadine; Corcoran, Cheryl M; Dias, Elisa et al. (2014) Reading deficits in schizophrenia and individuals at high clinical risk: relationship to sensory function, course of illness, and psychosocial outcome. Am J Psychiatry 171:949-59
Schoenfeld, Mircea A; Hopf, Jens-Max; Merkel, Christian et al. (2014) Object-based attention involves the sequential activation of feature-specific cortical modules. Nat Neurosci 17:619-24
Gill, Kelly Elizabeth; Evans, Elizabeth; Kayser, Jürgen et al. (2014) Smell identification in individuals at clinical high risk for schizophrenia. Psychiatry Res 220:201-4
Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona et al. (2014) Sounds activate visual cortex and improve visual discrimination. J Neurosci 34:9817-24
Hoptman, Matthew J; Antonius, Daniel; Mauro, Cristina J et al. (2014) Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: relationship to aggressive attitudes and behavior. Am J Psychiatry 171:939-48
Kantrowitz, J T; Hoptman, M J; Leitman, D I et al. (2014) The 5% difference: early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder. Psychol Med 44:25-36

Showing the most recent 10 out of 47 publications