There is growing evidence that alterations in gene expression contribute to the long-lasting effects of antipsychotic drugs on the brain. Project 4 contributes importantly to our understanding of the molecular actions of antipsychotic drugs by examining these phenomena at the chromatin level, and by thereby providing novel insight into the molecular basis of antipsychotic drug action. Project 4 will first characterize global changes in histone modifications induced by chronic antipsychotic drug exposure within striatal and prefrontal cortical regions of brain. Preliminary data, indicate that repeated haloperidol or clozapine administration increases levels of a repressive form of histone modification, methylation of Lys9 of histone H3, in these two regions. This effect is mediated via the upregulation of a particular Lys9-H3 methyltransferase, G9a. The proposed studies are aimed at characterizing the cell types within these regions where this drug-induced adaptation occurs and exploring its contribution to the behavioral actions of antipsychotic drugs in several rodent models. Using state-of-the-art chromatin methods, Project 4 will then identify the specific genes that show altered Lys9-H3 methylation, or alterations in other histone or DNA modifications, after chronic drug exposure. We also will study the role of two transcription factors, DeltaFosB and CREB, which are induced in striatal and prefrontal regions by antipsychotic drugs. This will include a cell type analysis of transcription factor regulation and altered binding to gene promoters genome-wide in response to drug exposure. By overlaying the results of these analyses with cell-type specific studies of mRNA expression in Projects 1 and 2, and biochemical studies in Project 3, we will identify antipsychotic drug targets with unique precision, and pursue a small number of targets for their functional role in antipsychotic drug action in our behavioral models. Finally, we will validate the regulation of histone modifications, transcription factors, and novel drug targets in postmortem tissue obtained from patients with schizophrenia. Together, these studies will advance our understanding of antipsychotic drug action, and provide novel approaches for the development of new drugs with improved efficacy and side effect profiles.

Public Health Relevance

to public health: Schizophrenia is a debilitating psychiatric disorder affecting ~1 % of the population. New therapeutic treatments for schizophrenia are needed. Project 4 will contribute to a more complete understanding of the cellular and molecular actions of antipsychotic drugs through molecular studies of the actions of these drugs in specific populations of nerve cells.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rockefeller University
New York
United States
Zip Code
Snyder, Gretchen L; Vanover, Kimberly E; Zhu, Hongwen et al. (2015) Functional profile of a novel modulator of serotonin, dopamine, and glutamate neurotransmission. Psychopharmacology (Berl) 232:605-21
Nakajima, Miho; Görlich, Andreas; Heintz, Nathaniel (2014) Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 159:295-305
Dietz, David M; Kennedy, Pamela J; Sun, Haosheng et al. (2014) ýýFosB induction in prefrontal cortex by antipsychotic drugs is associated with negative behavioral outcomes. Neuropsychopharmacology 39:538-44
Svenningsson, P; Berg, L; Matthews, D et al. (2014) Preliminary evidence that early reduction in p11 levels in natural killer cells and monocytes predicts the likelihood of antidepressant response to chronic citalopram. Mol Psychiatry 19:962-4
Meyer, Douglas A; Torres-Altoro, Melissa I; Tan, Zhenjun et al. (2014) Ischemic stroke injury is mediated by aberrant Cdk5. J Neurosci 34:8259-67
Surmeier, D James; Graves, Steven M; Shen, Weixing (2014) Dopaminergic modulation of striatal networks in health and Parkinson's disease. Curr Opin Neurobiol 29:109-17
Heiman, Myriam; Kulicke, Ruth; Fenster, Robert J et al. (2014) Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 9:1282-91
Oh, Yong-Seok; Gao, Pu; Lee, Ko-Woon et al. (2013) SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 152:831-43
Nestler, Eric J (2013) Treating the brain deep down: Brain surgery for anorexia nervosa? Nat Med 19:678-9
Svenningsson, Per; Kim, Yong; Warner-Schmidt, Jennifer et al. (2013) p11 and its role in depression and therapeutic responses to antidepressants. Nat Rev Neurosci 14:673-80

Showing the most recent 10 out of 20 publications