This project addresses the role of functional circuitry of how memories are formed using a non-human primate model. Despite the great deal of evidence that both the prefrontal cortex (PFC) and medial temporal lobe (MTL) are critical for normal memory, there has been remarkably little experimental effort toward understanding how these two systems interact This is, in part, because neurophysiological studies have largely focused on either the PFC or MTL individually. As a result, much of what we know about them is based on comparisons between different animals with different training histories, often on different tasks, and/or different levels of experience. This confounds their comparison and precludes examination of the precise timing of their activity that gives insight into network properties and signal flow. Our goal is a more integrated understanding of the PFC and MTL. We will accomplish this by recording simultaneously from multiple electrodes in multiple subregions of the PFC and MTL while monkeys form and recall new context guided associative memories and while they make inferences based on those memories. By comparing the relative neural latencies for memories to be formed and recalled, we will determine where memories are formed, how they are recalled, and how memory-related signals flow between the PFC and MTL.

Public Health Relevance

This work will bridge a critical and glaring gap in our understanding of memory: The establishment of homologies between the different subregions of the PFC and MTL of humans, monkeys, and rodents. These linkages will be key in validating animal models of memory disorders and thus provide new means for testing underlying cellular causes and assessing potential treatments.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Boston University
United States
Zip Code
Howard, Marc W; Eichenbaum, Howard (2015) Time and space in the hippocampus. Brain Res 1621:345-54
Wang, Jane X; Cohen, Neal J; Voss, Joel L (2015) Covert rapid action-memory simulation (CRAMS): a hypothesis of hippocampal-prefrontal interactions for adaptive behavior. Neurobiol Learn Mem 117:22-33
Brown, Thackery I; Hasselmo, Michael E; Stern, Chantal E (2014) A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory. Hippocampus 24:819-39
Erdem, Ugur M; Hasselmo, Michael E (2014) A biologically inspired hierarchical goal directed navigation model. J Physiol Paris 108:28-37
Brown, Thackery I; Whiteman, Andrew S; Aselcioglu, Irem et al. (2014) Structural differences in hippocampal and prefrontal gray matter volume support flexible context-dependent navigation ability. J Neurosci 34:2314-20
Wang, Jane X; Rogers, Lynn M; Gross, Evan Z et al. (2014) Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345:1054-7
Hasselmo, Michael E; Stern, Chantal E (2014) Theta rhythm and the encoding and retrieval of space and time. Neuroimage 85 Pt 2:656-66
Eichenbaum, Howard (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15:732-44
Wang, Jane X; Voss, Joel L (2014) Brain networks for exploration decisions utilizing distinct modeled information types during contextual learning. Neuron 82:1171-82
Raudies, Florian; Zilli, Eric A; Hasselmo, Michael E (2014) Deep belief networks learn context dependent behavior. PLoS One 9:e93250

Showing the most recent 10 out of 26 publications