Epidemiological studies have highlighted the strong influence of genetic susceptibility on schizophrenia (SZ). Although numerous studies have mapped SZ loci, the number of replicated associations remains scarce. Moreover, causative alleles remain elusive, in part due to genetic and allelic heterogeneity. Together with our colleagues, we have shown that members of the pericentriolar matrix contribute loss of function alleles to the pathogenesis of SZ. We have focused on PCM1, a protein which we have shown to bind to DISC1 and to harbor loss of function mutations in SZ patients. We have modeled this lesion in the mouse;our preliminary data suggest that loss of PCM1 causes anatomical and behavioral defects, some of which present in heterozygotes. Furthermore, we have found that not only PCM1 but also centrosomal proteins interact preferentially with phosphorylated DISC1 to mediate a switch from proliferation to migration during early corticogenesis. Based on these data we propose to extend our studies and understand a) how loss of PCM1 affects cortical architecture and behavior;b) whether loss of this protein (and concomitant centrosomal disorganization) exhibits progressive phenotypes. Second, we will examine a new protein, RPGRIP1L, which we showed to interact with both PCM1 and phospho-DISC1, and which has been identified at genome-wide significance to be associated with SZ. We will sequence this transcript in 384 SZ cases and 384 controls, functionally test all resultant alleles using our now established zebrafish complementation assay and ask whether coding RPGRIP1L changes contribute to SZ. Finally, we will extend our studies to novel pericentriolar proteins. Specifically, we will parse 49 positional SZ candidates loci that encode centrosomal proteins and identify transcripts for which a) loss of function phenocopies the biochemical Wnt defect of PCM1 and DISC1 loss of function;and b) preferentially bind to phosphorylated DISC1. These will then be tested in our genetic cohort for candidate susceptibility alleles. These studies, together with the other Center groups, will enhance our understanding of SZ and will provide both new genetic markers and potential therapeutic pathways.

Public Health Relevance

Schizophrenia is a common disorder that represents a significant socioeconomic burden. Project 2, as part of this Conte Center, will bring to bear a synthesis of genetic, model organisms, and biochemistry to identify novel SZ genes as they pertain to neurodevelopment and develop tools that will be able to test the functional significance of candidate mutations found in SZ patients.

Agency
National Institute of Health (NIH)
Type
Specialized Center (P50)
Project #
5P50MH094268-04
Application #
8681533
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
Severance, Emily G; Gressitt, Kristin L; Stallings, Cassie R et al. (2016) Probiotic normalization of Candida albicans in schizophrenia: A randomized, placebo-controlled, longitudinal pilot study. Brain Behav Immun :
Saylor, Deanna; Dickens, Alex M; Sacktor, Ned et al. (2016) HIV-associated neurocognitive disorder--pathogenesis and prospects for treatment. Nat Rev Neurol 12:234-48
Severance, Emily G; Gressitt, Kristin L; Stallings, Catherine R et al. (2016) Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophr 2:16018
Severance, Emily G; Yolken, Robert H; Eaton, William W (2016) Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 176:23-35
Saito, A; Taniguchi, Y; Rannals, M D et al. (2016) Early postnatal GABAA receptor modulation reverses deficits in neuronal maturation in a conditional neurodevelopmental mouse model of DISC1. Mol Psychiatry 21:1449-59
Katsanis, Nicholas (2016) The continuum of causality in human genetic disorders. Genome Biol 17:233
Tankou, Stephanie; Ishii, Kazuhiro; Elliott, Christina et al. (2016) SUMOylation of DISC1: a potential role in neural progenitor proliferation in the developing cortex. Mol Neuropsychiatry 2:20-27
Macpherson, Tom; Morita, Makiko; Wang, Yanyan et al. (2016) Nucleus accumbens dopamine D2-receptor expressing neurons control behavioral flexibility in a place discrimination task in the IntelliCage. Learn Mem 23:359-64
Koh, Ming Teng; Shao, Yi; Sherwood, Andrew et al. (2016) Impaired hippocampal-dependent memory and reduced parvalbumin-positive interneurons in a ketamine mouse model of schizophrenia. Schizophr Res 171:187-94
Owen, Michael J; Sawa, Akira; Mortensen, Preben B (2016) Schizophrenia. Lancet 388:86-97

Showing the most recent 10 out of 130 publications