We wish to establish a Research Computing Core (RCC) to complement both the imaging core and to provide an underlying platform to support a seamless continuation of computation from the advanced technology and science provided from our partnering Pis, Drs. Hensch, Dulac and Lichtman. The Research Computing Core will pay special interest to the analysis and genomic/connectomic studies of imprinting within pan/albumin (PV)-positive GABAergic interneurons. Advanced tools for automated image segmentation of neurons, synapses, and genome wide informatics analysis will be developed in close collaboration within the imaging core led by Dr. Zhuang. These tools will also enhance and support the informatics analysis of genome studies from Dr. Dulac's team. In addition, significant information technology infrastructure will be provided to support multi-terabyte data sets resulting from Dr. Lichtman's laboratory studies.

Public Health Relevance

Through collaboration with Drs. Dulac, Lichtman, Hensch and our partner Dr Zhuang in the imaging core, the Research Computing Core (RCC) will help provide advanced computation, large scale genomic data analysis and support for our combined and continued studies into brain function shaped by the genetics and environment during critical periods of neuronal circuit development. This is a one of a kind endeavor pulling together existing partnerships into a cohesive core, further extending the ability for the Research Computing organization to not only support the individual faculty, but more importantly to actively extend the reach of the RCC to be able to reflect the true collaborative nature of a Conte Center. By also welcoming in students and researchers into the core RCC will be able to provide more than just traditional

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH094271-02
Application #
8381899
Study Section
Special Emphasis Panel (ZMH1-ERB-S)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
2
Fiscal Year
2012
Total Cost
$223,031
Indirect Cost
$91,060
Name
Harvard University
Department
Type
DUNS #
082359691
City
Cambridge
State
MA
Country
United States
Zip Code
02138
Mierau, Susanna B; Patrizi, Annarita; Hensch, Takao K et al. (2016) Cell-Specific Regulation of N-Methyl-D-Aspartate Receptor Maturation by Mecp2 in Cortical Circuits. Biol Psychiatry 79:746-54
Morgan, Josh Lyskowski; Berger, Daniel Raimund; Wetzel, Arthur Willis et al. (2016) The Fuzzy Logic of Network Connectivity in Mouse Visual Thalamus. Cell 165:192-206
Perez, Julio D; Rubinstein, Nimrod D; Dulac, Catherine (2016) New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 39:347-84
Kobayashi, Yohei; Ye, Zhanlei; Hensch, Takao K (2015) Clock genes control cortical critical period timing. Neuron 86:264-75
Perez, Julio D; Rubinstein, Nimrod D; Fernandez, Daniel E et al. (2015) Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. Elife 4:e07860
Kaynig, Verena; Vazquez-Reina, Amelio; Knowles-Barley, Seymour et al. (2015) Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Med Image Anal 22:77-88
Santoro, Stephen W; Dulac, Catherine (2015) Histone variants and cellular plasticity. Trends Genet 31:516-27
Sigal, Yaron M; Speer, Colenso M; Babcock, Hazen P et al. (2015) Mapping Synaptic Input Fields of Neurons with Super-Resolution Imaging. Cell 163:493-505
Morishita, Hirofumi; Cabungcal, Jan-Harry; Chen, Ying et al. (2015) Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons. Biol Psychiatry 78:396-402
Do, Kim Q; Cuenod, Michel; Hensch, Takao K (2015) Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophr Bull 41:835-46

Showing the most recent 10 out of 23 publications