Pathological events during eariy brain development are believed to hold the key to the emergence of schizophrenia (SZ) in adulthood. Deficits in memory, attention and executive function, i.e. core domains of the psychopathology of SZ, might be causally related to dysfunctional glutamatergic and nicotinergic transmission. Kynurenine acid (KYNA), an astrocytic metabolite ofthe kynurenine pathway of tryptophan degradation, is an endogenous inhibitor of a7nACh and NMDA receptors in the brain and has been implicated in the pathology of SZ. Studies using cerebrospinal fluid (CSF) or post-mortem brain tissue of patients with SZ suggest that an excess of KYNA might play a causative role in the disease. As an endogenous antagonist at a7nAChRs and NMDARs, which are both critically involved in cognitive functions, increased KYNA levels in the brain might be especially involved in the cognitive deficits that are seen in individuals with SZ. The connection between KYNA and SZ may have a developmental dimension as several ofthe risk factors associated with SZ, including prenatal infections, result in the activation of a cytokine-responsive enzyme that catalyzes an increase in the formation of kynurenine, the direct bioprecursor of KYNA. The proposed project is based on recent studies showing that elevating brain KYNA from embryonic day (ED) 15 to postnatal day (PD) 21 results in impaired cognitive function in the adult offspring. The planned experiments are centered around the fundamentally new concept, supported by preliminary data included in this proposal, that elevating KYNA during the prenatal developmental period alone may serve as a model to study the etiology of cognitive dysfunction in SZ. The central hypothesis of this proposal is that elevated KYNA formation during prenatal development, produced from its bioprecursor kynurenine, influences the development ofthe brain and, as a result, alters kynurenine pathway dynamics, extracellular glutamate levels, and modulates hippocampal-mediated cognitive behavior in adulthood. It follows, and will be tested here, that inhibition of KYNA synthesis is a valuable therapeutic strategy to combat cognitive deficits in SZ.

Public Health Relevance

Cognitive dysfunctions are a core domain of the psychopathology of schizophrenia (SZ), a debilitating disorder affecting ~ 1 % ofthe population. The proposed work is designed to provide new insights into the role of kynurenic acid (KYNA), a neuroactive compound that is elevated in the brain of individuals with SZ, in cognition, and examine inhibition of KYNA formation as a novel strategy to overcome cognitive dysfunction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
1P50MH103222-01
Application #
8816212
Study Section
Special Emphasis Panel (ZMH1-ERB-L (01))
Project Start
Project End
Budget Start
2014-05-09
Budget End
2015-04-30
Support Year
1
Fiscal Year
2014
Total Cost
$444,635
Indirect Cost
$146,257
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Rowland, Laura M; Summerfelt, Ann; Wijtenburg, S Andrea et al. (2016) Frontal Glutamate and γ-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia. JAMA Psychiatry 73:166-74
Wang, Qi; Chen, Rong; JaJa, Joseph et al. (2016) Connectivity-Based Brain Parcellation: A Connectivity-Based Atlas for Schizophrenia Research. Neuroinformatics 14:83-97
Pershing, Michelle L; Phenis, David; Valentini, Valentina et al. (2016) Prenatal kynurenine exposure in rats: age-dependent changes in NMDA receptor expression and conditioned fear responding. Psychopharmacology (Berl) 233:3725-3735
Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga et al. (2016) Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia. Psychoneuroendocrinology 63:86-93
Kochunov, Peter; Ganjgahi, Habib; Winkler, Anderson et al. (2016) Heterochronicity of white matter development and aging explains regional patient control differences in schizophrenia. Hum Brain Mapp 37:4673-4688
Du, Xiaoming; Kochunov, Peter; Summerfelt, Ann et al. (2016) The role of white matter microstructure in inhibitory deficits in patients with schizophrenia. Brain Stimul :
Rowland, L M; Krause, B W; Wijtenburg, S A et al. (2016) Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study. Mol Psychiatry 21:198-204
Kochunov, Peter; Thompson, Paul M; Winkler, Anderson et al. (2016) The common genetic influence over processing speed and white matter microstructure: Evidence from the Old Order Amish and Human Connectome Projects. Neuroimage 125:189-97
Keefe, Richard S E; Haig, George M; Marder, Stephen R et al. (2016) Report on ISCTM Consensus Meeting on Clinical Assessment of Response to Treatment of Cognitive Impairment in Schizophrenia. Schizophr Bull 42:19-33
Kochunov, Peter; Rowland, Laura M; Fieremans, Els et al. (2016) Diffusion-weighted imaging uncovers likely sources of processing-speed deficits in schizophrenia. Proc Natl Acad Sci U S A 113:13504-13509

Showing the most recent 10 out of 35 publications