As a result of the accelerated pace of development of technologies for characterizing the human genome, the rate-limiting step for large scale genomic investigation in clinical populations is now phenotyping. This is particularly the case for neuropsychiatric (NP) illness, where phenotypes are complex, biomarkers are lacking, and the primary cell types of interest are difficult to access directly. It has become apparent that both rare and common genetic variation contributes to disease risk and that this risk crosses traditional diagnostic boundaries in psychiatry. Taking advantage of a large, already-established NP biobank could dramatically accelerate progress toward understanding the cross-disorder mechanism of action of disease liability genes. This study proposes novel applications of emerging technologies in informatics and cellular neurobiology to eliminate this phenotyping bottleneck. In doing so, it will accelerate investigation of clinical and cellular phenotypes for understanding single and multilocus/polygenic associations.
Aim 1 : Adapt and expand one of the largest NP cellular biobanks by parsing electronic health records with gold-standard assessment of cognition and other RDoC phenotypes.
Aim 2 : Define the genome-wide multidimensional functional genomics (MFG) landscape in NP disease into which the transcriptomic signature (RNA-seq) of each induced neuron (IN) representing a clinically characterized individual is projected. The projection provides the mapping from molecular to phenotypic characterization and a directionality towards healthful/neurotypical states used in Aim 3.
Aim 3 : Develop a probabilistic model of gene expression dependencies that will predict which small molecular perturbations are likely to shift the IN transcriptomic signature in a healthful direction in the MFG and to then update the model based on measured perturbations in the MFG.
Aim 4 : Select patient samples to study in greater detail for epigenetic (DNA methylation, histone marks and RNA editing) and transcriptional control particularly with regard to activity dependent changes that have been implicated in many NP diseases.
Aim 5 : Here we assess just how well the clinical phenotypes are informed by the genome-wide characterizations and assess which is more robust.

Public Health Relevance

This study is designed to answer the question: can we use the fruits of the first phases of the human genome project to create a new and more robust scheme of classifying neuropsychiatric disease, one that is more reliable with regard to prognosis of these diseases, more insightful as to the biological aberration in each category and, therefore, more effective in treating the patient.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
1P50MH106933-01
Application #
8698507
Study Section
Ethical, Legal, Social Implications Review Committee (GNOM)
Program Officer
Senthil, Geetha
Project Start
2014-09-19
Project End
2019-07-30
Budget Start
2014-09-19
Budget End
2015-07-30
Support Year
1
Fiscal Year
2014
Total Cost
$3,375,284
Indirect Cost
$744,298
Name
Harvard Medical School
Department
Miscellaneous
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Payne, Rebecca; Neykov, Matey; Jensen, Majken Karoline et al. (2016) Kernel machine testing for risk prediction with stratified case cohort studies. Biometrics 72:372-81
Castro, V M; Kong, S W; Clements, C C et al. (2016) Absence of evidence for increase in risk for autism or attention-deficit hyperactivity disorder following antidepressant exposure during pregnancy: a replication study. Transl Psychiatry 6:e708
Nazeen, Sumaiya; Palmer, Nathan P; Berger, Bonnie et al. (2016) Integrative analysis of genetic data sets reveals a shared innate immune component in autism spectrum disorder and its co-morbidities. Genome Biol 17:228
Alural, Begum; Genc, Sermin; Haggarty, Stephen J (2016) Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present, and future. Prog Neuropsychopharmacol Biol Psychiatry :
Loebrich, Sven; Rathje, Mette; Hager, Emily et al. (2016) Genomic mapping and cellular expression of human CPG2 transcripts in the SYNE1 gene. Mol Cell Neurosci 71:46-55
Stein, Murray B; Chen, Chia-Yen; Ursano, Robert J et al. (2016) Genome-wide Association Studies of Posttraumatic Stress Disorder in 2 Cohorts of US Army Soldiers. JAMA Psychiatry 73:695-704
Payne, Rebecca; Yang, Ming; Zheng, Yingye et al. (2016) Robust risk prediction with biomarkers under two-phase stratified cohort design. Biometrics 72:1037-1045
Ataman, Bulent; Boulting, Gabriella L; Harmin, David A et al. (2016) Evolution of Osteocrin as an activity-regulated factor in the primate brain. Nature 539:242-247
McCoy, Thomas H; Castro, Victor M; Cagan, Andrew et al. (2015) Sentiment Measured in Hospital Discharge Notes Is Associated with Readmission and Mortality Risk: An Electronic Health Record Study. PLoS One 10:e0136341
Lodato, Michael A; Woodworth, Mollie B; Lee, Semin et al. (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94-8

Showing the most recent 10 out of 11 publications