Understanding the molecular processes involved in the development and functional organization of biological systems, as well as their alterations in disease states, requires precise measurements of nucleic acid- and protein-level properties of cellular machinery across different cell types and developmental time points. This is particularly difficult to achieve in the human brain due to its cellular complexity and inaccessibility for experimentation. Here, we propose a Center with a multi-disciplinary group of investigators that will develop upon several cutting-edge genomics approaches in a unique and innovative way to elucidate molecular networks underlying human brain development and evolution. This will be achieved through the generation and exploration of integrated multi-dimensional genomic scale data generated from single cells and tissues of developing and adult human and non-human primate (NHP;chimpanzee and macaque) brains. We will also use these new sources of information to facilitate the identification of regulatory mutations in autism spectrum disorders (ASD) as well as to elucidate common and cell type specific molecular networks compromised in ASD. Finally, we implement approaches to model and functionally characterize of human-specific and ASD-associated regulatory mutations in the context of mouse brain development. Our proposed Center couples these research efforts with extensive training opportunities in human and comparative genomics. This organizational structure combines the expertise of each individual key investigator and establishes a CEGS that is capable of much more than each individual working alone and whose resources will create capabilities that are much more than the sum of its parts. Our work will pave the way for reconstructing molecular networks in human development and disease states, and provide a clear path to new and more effective treatments of major disorders.

Public Health Relevance

The identification and characterization of functional genomic elements in human and non-human primate neurodevelopment may lead to development of new and more effective treatments of major brain disorders.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Specialized Center (P50)
Project #
Application #
Study Section
Ethical, Legal, Social Implications Review Committee (GNOM)
Program Officer
Senthil, Geetha
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Onorati, Marco; Li, Zhen; Liu, Fuchen et al. (2016) Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia. Cell Rep 16:2576-92
Olmos-Serrano, Jose Luis; Kang, Hyo Jung; Tyler, William A et al. (2016) Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination. Neuron 89:1208-22
Kawasawa, Yuka Imamura; Salzberg, Anna C; Li, Mingfeng et al. (2016) RNA-seq analysis of developing olfactory bulb projection neurons. Mol Cell Neurosci 74:78-86
Caubit, Xavier; Gubellini, Paolo; Andrieux, Joris et al. (2016) TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat Genet 48:1359-1369
Lin, Zhixiang; Li, Mingfeng; Sestan, Nenad et al. (2016) A Markov random field-based approach for joint estimation of differentially expressed genes in mouse transcriptome data. Stat Appl Genet Mol Biol 15:139-50
Silbereis, John C; Pochareddy, Sirisha; Zhu, Ying et al. (2016) The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron 89:248-68
D'Gama, Alissa M; Pochareddy, Sirisha; Li, Mingfeng et al. (2015) Targeted DNA Sequencing from Autism Spectrum Disorder Brains Implicates Multiple Genetic Mechanisms. Neuron 88:910-7
Shibata, Mikihito; Gulden, Forrest O; Sestan, Nenad (2015) From trans to cis: transcriptional regulatory networks in neocortical development. Trends Genet 31:77-87
Lun, Melody P; Johnson, Matthew B; Broadbelt, Kevin G et al. (2015) Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci 35:4903-16
PsychENCODE Consortium; Akbarian, Schahram; Liu, Chunyu et al. (2015) The PsychENCODE project. Nat Neurosci 18:1707-12