Visual perception is limited by two fundamental rhythms, a 7-10 Hz theta/alpha rhythm that describes fluctuations in psychophysical performance and a 3-5 Hz rhythm related to saccadic eye movements. The structure of a task may impose or entrain an additional rhythm, such as when a target stimulus follows a cue at a fixed interval. The goal of this project is to identify in humans the neural correlates of these rhythms and determine their relationship to intrinsic rhythms of spontaneous activity. Neural activity is measured using electrocorticography (ECoG) in patients undergoing surgery for epilepsy. In Expt. 1, localizers are conducted to identify electrodes that respond to saccadic eye movements, foveal stimuli, and/or show spatially selective responses to peripheral stimuli. Functional magnetic resonance imaging is used to identify the large-scale brain network associated with each electrode. In Expt. 2 subjects are cued to detect a target under conditions of temporal uncertainty. In the one-location condition, the target only appears at the cued location. In the two- location condition, the target appears equi-probably at one of two locations. Consistent with previous studies indicating a fixed sampling rhythm, performance should fluctuate in the 1-location condition at twice the frequency as the fluctuations in each location of the 2-location condition. We then identify the neural correlate(s) of this rhythm in electrodes identified by the localizer. These correlates may be associated with local field potentials, modulations of band-limited power, or phase-amplitude relationships that couple low frequencies to high frequencies. In addition, we determine whether these correlates can be identified in intrinsic activity measured at rest. Expt. 3 compares the 1-location and 2-location conditions when the interval between the cue and target is fixed, corresponding to a task-imposed rhythm and temporal certainty. The question is whether the neural correlates of the task-imposed rhythm are independent of the intrinsic rhythms measured in Expt. 2. Finally, Expt. 4 compares the neural rhythms that are generated when subjects process foveal stimuli during a sequence of saccades as compared to the same foveal stimuli when fixation is maintained. We test the hypothesis that saccades produce a phase reset that aligns the maximal excitability phase of internal rhythms with incoming sensory signals. This hypothesis predicts that high gamma sensory evoked responses and behavioral performance should be facilitated by saccades. We also determine the relationship between the neural correlates of the saccadic rhythm, the 7-10 Hz sampling rhythm, and spontaneous rhythms measured at rest. We will interact closely with Project 2, which uses 2 of these tasks in monkey intracortical recordings, and with Projects 3 and 4 that study parallel auditory tasks in humans and monkeys, respectively. Along with Project 3, we will supply data to dynamical network modeling studies (Project 5), and use their findings to refine and/or modify our paradigms as work progresses. Integration of findings across these studies will build more robust models of brain mechanisms operating in Active Sensing.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH109429-02
Application #
9471858
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Milham, Michael P; Ai, Lei; Koo, Bonhwang et al. (2018) An Open Resource for Non-human Primate Imaging. Neuron 100:61-74.e2
Xu, Ting; Falchier, Arnaud; Sullivan, Elinor L et al. (2018) Delineating the Macroscale Areal Organization of the Macaque Cortex In Vivo. Cell Rep 23:429-441
Swift, J R; Coon, W G; Guger, C et al. (2018) Passive functional mapping of receptive language areas using electrocorticographic signals. Clin Neurophysiol 129:2517-2524
Fiebelkorn, Ian C; Pinsk, Mark A; Kastner, Sabine (2018) A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention. Neuron 99:842-853.e8
Bonnefond, Mathilde; Kastner, Sabine; Jensen, Ole (2017) Communication between Brain Areas Based on Nested Oscillations. eNeuro 4:
Holdgraf, Christopher R; Rieger, Jochem W; Micheli, Cristiano et al. (2017) Encoding and Decoding Models in Cognitive Electrophysiology. Front Syst Neurosci 11:61
Halassa, Michael M; Kastner, Sabine (2017) Thalamic functions in distributed cognitive control. Nat Neurosci 20:1669-1679
Popov, Tzvetan; Kastner, Sabine; Jensen, Ole (2017) FEF-Controlled Alpha Delay Activity Precedes Stimulus-Induced Gamma-Band Activity in Visual Cortex. J Neurosci 37:4117-4127