Although the gene which causes DYT1 dystonia was discovered nearly a decade ago, the mechanism responsible for the symptoms in patients with this or many other forms of dystonia remains uncertain. This is a major obstacle to the rational design of effective therapies. During the prior period of support, we produced and characterized several mouse models of DYT1 in which there is expression of the abnormal torsinA protein throughout the brain, and found that these exhibit both behavioral as well as neurochemical abnormalities which appear to resemble aspects ofthe human disease. These have provided important insight into the effects of mutant torsinA on brain function. These models do not, however, resolve the question of how the abnormal protein leads to the phenotypic abnormalities, or identify the site of action. In this project, we will produce and study a novel series of mouse models with selective inactivation of torsinA, or knock-in ofthe DYT1 mutation. Using these, we will address the issue of whether selective inactivation in the cortex, striatum, or cerebellum is sufficient to produce behavioral and neurochemical abnormalities in the intact rodent. Given the strong evidence for involvement of the basal ganglia in many forms of dystonia, we will narrow the focus further by examining selective inactivation or knock-in ofthe DYT1 mutation in populations of striatal neurons, and within dopaminergic neurons. This project will also work closely with the other projects and cores, to identify opportunities to develop additional novel mouse models. Finally, we will seek to validate these models by assessing the effect of a drug treatment known to be effective in human dystonia, and establish a National Resource for distribution of these models to promote development of novel therapies. The overall goal of this work is to establish the anatomical site and mechanism of the dysfunction responsible for DYT1 and other dystonias, and enable targeted therapies for the disease.

Public Health Relevance

Dystonia is a common and disabling neurological disorder. Relatively little is known about the abnormalities in the brain which cause dystonia, and current treatments are not very effective. In this project we will use genetically engineered mice to study the brain circuits involved in dystonia, and establish new models which can be used to develop better treatments for dystonia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS037409-14
Application #
8512801
Study Section
Special Emphasis Panel (ZNS1-SRB-B)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
14
Fiscal Year
2013
Total Cost
$400,143
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Nery, Flávia C; da Hora, Cintia C; Yaqub, Uzma et al. (2015) New methods for investigation of neuronal migration in embryonic brain explants. J Neurosci Methods 239:80-4
de Carvalho Aguiar, Patricia; Borges, Vanderci; Ferraz, Henrique Ballalai et al. (2015) Novel compound heterozygous mutations in PRKRA cause pure dystonia. Mov Disord 30:877-8
Vaughn, Lauren S; Bragg, D Cristopher; Sharma, Nutan et al. (2015) Altered activation of protein kinase PKR and enhanced apoptosis in dystonia cells carrying a mutation in PKR activator protein PACT. J Biol Chem 290:22543-57
Yokoi, Fumiaki; Dang, Mai T; Liu, Jun et al. (2015) Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 ΔGAG heterozygous knock-in mice. Behav Brain Res 279:202-10
Eskow Jaunarajs, K L; Bonsi, P; Chesselet, M F et al. (2015) Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 127-128:91-107
Cho, Jin A; Zhang, Xuan; Miller, Gregory M et al. (2014) 4-Phenylbutyrate attenuates the ER stress response and cyclic AMP accumulation in DYT1 dystonia cell models. PLoS One 9:e110086
Nery, Flavia C; da Hora, Cintia C; Atai, Nadia A et al. (2014) Microfluidic platform to evaluate migration of cells from patients with DYT1 dystonia. J Neurosci Methods 232:181-8
Hettich, Jasmin; Ryan, Scott D; de Souza, Osmar Norberto et al. (2014) Biochemical and cellular analysis of human variants of the DYT1 dystonia protein, TorsinA/TOR1A. Hum Mutat 35:1101-13
Bragg, D Cristopher; Sharma, Nutan (2014) Update on treatments for dystonia. Curr Neurol Neurosci Rep 14:454
Saunders-Pullman, Rachel; Fuchs, Tania; San Luciano, Marta et al. (2014) Heterogeneity in primary dystonia: lessons from THAP1, GNAL, and TOR1A in Amish-Mennonites. Mov Disord 29:812-8

Showing the most recent 10 out of 54 publications