Dominant missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease (PD), but the mechanisms whereby mutant LRRK2 alters neuronal function and causes neurodegeneration remain poorly understood. In cell biological studies we directly link PD mutant forms of LRRK2 to activation of the FADD/caspase-8 signaling arm of the extrinsic cell death pathway. Notably, we find that 1) LRRK2, FADD and caspase-8 form a signaling complex, 2) LRRK2 PD mutations enhance its interaction with FADD, and 3) FADD and caspase-8 are required for the death of LRRK2-transfected primary neurons. The in vivo relevance of this complex is supported by our finding of caspase-8 activation in brain tissue from PD patients with LRRK2 mutations and PD mutant LRRK2 transgenic mice. In the current application, we propose to test whether signaling through FADD/caspase-8 is required for the nigrostriatal-related phenotypes seen in PD mutant LRRK2 transgenic mice, including reduced locomotion (L-dopa responsive), decreased striatal dopamine (DA) efflux, and axonal degeneration. In the first aim we will explore whether the time course and anatomic distribution of caspase-8 activation correlates with the behavioral and physiological phenotypes of LRRK2 transgenic mice. In the second and third aims will use Cre-transgenic and floxed FADD and caspase-8 mice together with the LRRK2 transgenic model to ask whether the loss of these signaling molecules reduces or prevents the behavioral, physiological or neurodegenerative phenotypes caused by PD mutant LRRK2.

Public Health Relevance

Neurodegenerative illnesses such as Parkinson and Alzheimer disease are an increasingly prevalent problem in aging societies, yet no therapies exist that retard or prevent neurodegeneration. One reason for the lack of effective therapies is that the mechanisms underlying neuronal dysfunction and death are poorly understood. This project explores the deleterious effects of the most common Parkinson disease-causing gene in an effort to identify novel therapeutic targets for this disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038370-15
Application #
8546446
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
15
Fiscal Year
2013
Total Cost
$340,297
Indirect Cost
$128,933
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Wu, Di; Klaw, Michelle C; Kholodilov, Nikolai et al. (2016) Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush. Front Mol Neurosci 9:49
Louis, Elan D; Clark, Lorraine; Ottman, Ruth (2016) Familial Aggregation and Co-Aggregation of Essential Tremor and Parkinson's Disease. Neuroepidemiology 46:31-6
Guerreiro, Rita; Escott-Price, Valentina; Darwent, Lee et al. (2016) Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiol Aging 38:214.e7-10
Pereira, Daniela B; Schmitz, Yvonne; Mészáros, József et al. (2016) Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat Neurosci 19:578-86
Tambini, Marc D; Pera, Marta; Kanter, Ellen et al. (2016) ApoE4 upregulates the activity of mitochondria-associated ER membranes. EMBO Rep 17:27-36
Clark, L N; Ye, X; Liu, X et al. (2015) Genetic analysis of ten common degenerative hereditary ataxia loci in patients with essential tremor. Parkinsonism Relat Disord 21:943-7
Saunders-Pullman, Rachel; Alcalay, Roy N; Mirelman, Anat et al. (2015) REM sleep behavior disorder, as assessed by questionnaire, in G2019S LRRK2 mutation PD and carriers. Mov Disord 30:1834-9
Aimé, Pascaline; Sun, Xiaotian; Zareen, Neela et al. (2015) Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. J Neurosci 35:10731-49
Pasini, Silvia; Corona, Carlo; Liu, Jin et al. (2015) Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep 11:183-91
Cebrián, Carolina; Loike, John D; Sulzer, David (2015) Neuroinflammation in Parkinson's disease animal models: a cell stress response or a step in neurodegeneration? Curr Top Behav Neurosci 22:237-70

Showing the most recent 10 out of 223 publications