Dominant missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease (PD), but the mechanisms whereby mutant LRRK2 alters neuronal function and causes neurodegeneration remain poorly understood. In cell biological studies we directly link PD mutant forms of LRRK2 to activation of the FADD/caspase-8 signaling arm of the extrinsic cell death pathway. Notably, we find that 1) LRRK2, FADD and caspase-8 form a signaling complex, 2) LRRK2 PD mutations enhance its interaction with FADD, and 3) FADD and caspase-8 are required for the death of LRRK2-transfected primary neurons. The in vivo relevance of this complex is supported by our finding of caspase-8 activation in brain tissue from PD patients with LRRK2 mutations and PD mutant LRRK2 transgenic mice. In the current application, we propose to test whether signaling through FADD/caspase-8 is required for the nigrostriatal-related phenotypes seen in PD mutant LRRK2 transgenic mice, including reduced locomotion (L-dopa responsive), decreased striatal dopamine (DA) efflux, and axonal degeneration. In the first aim we will explore whether the time course and anatomic distribution of caspase-8 activation correlates with the behavioral and physiological phenotypes of LRRK2 transgenic mice. In the second and third aims will use Cre-transgenic and floxed FADD and caspase-8 mice together with the LRRK2 transgenic model to ask whether the loss of these signaling molecules reduces or prevents the behavioral, physiological or neurodegenerative phenotypes caused by PD mutant LRRK2.

Public Health Relevance

Neurodegenerative illnesses such as Parkinson and Alzheimer disease are an increasingly prevalent problem in aging societies, yet no therapies exist that retard or prevent neurodegeneration. One reason for the lack of effective therapies is that the mechanisms underlying neuronal dysfunction and death are poorly understood. This project explores the deleterious effects of the most common Parkinson disease-causing gene in an effort to identify novel therapeutic targets for this disease.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center (P50)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
New York
United States
Zip Code
Mosharov, Eugene V; Borgkvist, Anders; Sulzer, David (2015) Presynaptic effects of levodopa and their possible role in dyskinesia. Mov Disord 30:45-53
Robeson, William; Dhawan, Vijay; Ma, Yilong et al. (2014) Radiation absorbed dose to the basal ganglia from dopamine transporter radioligand 18F-FPCIT. Biomed Res Int 2014:498072
Morimoto, Richard I; Cuervo, Ana Maria (2014) Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci 69 Suppl 1:S33-8
Foster, Daniel J; Gentry, Patrick R; Lizardi-Ortiz, Jose E et al. (2014) M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location. J Neurosci 34:3253-62
Fedorowicz, Maja A; de Vries-Schneider, Rosa L A; Rub, Cornelia et al. (2014) Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy. EMBO Rep 15:86-93
Cebrián, Carolina; Zucca, Fabio A; Mauri, Pierluigi et al. (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 5:3633
Janicki, S C; Park, N; Cheng, R et al. (2014) Estrogen receptor ? variants affect age at onset of Alzheimer's disease in a multiethnic female cohort. Dement Geriatr Cogn Disord 38:200-13
Bras, Jose; Guerreiro, Rita; Darwent, Lee et al. (2014) Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum Mol Genet 23:6139-46
Romaní-Aumedes, J; Canal, M; Martín-Flores, N et al. (2014) Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson's disease. Cell Death Dis 5:e1364
Guardia-Laguarta, Cristina; Area-Gomez, Estela; Rüb, Cornelia et al. (2014) ?-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci 34:249-59

Showing the most recent 10 out of 189 publications