The Udall Center at Columbia requires a central administrative component to set policies, to establish standard operating procedures for their implementation, to oversee the day-to-day utilization of these procedures, to organize and conduct regular internal and external scientific review, and to organize and implement all the necessary forms of scientific communication to make new discoveries and achievements within the Center known to the scientific community and the public. Within the Udall Center at Columbia, all of these necessary and important functions will be performed by the Administrative Core (Core A). These functions of the Administrative Core will be performed by four components: (1) The Udall Center Executive Committee;(2) The Internal Advisory Committee;(3) The External Advisory Committee;and (4) Administrative Core Professional Staff. The composition of these components, and how they serve the functions of the Administrative Core, is herein described.

Public Health Relevance

A scientific program of the size of the Udall Center at Columbia requires a central organizational component to oversee proper financial administration;adherence to all University and Federal regulations and policies regarding animal use, occupational safety and labor relations;internal and external communications;internal and external review. The Administrative Core of The Columbia Udall Center provides all of these functions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038370-15
Application #
8546449
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
15
Fiscal Year
2013
Total Cost
$200,748
Indirect Cost
$76,060
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Mosharov, Eugene V; Borgkvist, Anders; Sulzer, David (2015) Presynaptic effects of levodopa and their possible role in dyskinesia. Mov Disord 30:45-53
Robeson, William; Dhawan, Vijay; Ma, Yilong et al. (2014) Radiation absorbed dose to the basal ganglia from dopamine transporter radioligand 18F-FPCIT. Biomed Res Int 2014:498072
Morimoto, Richard I; Cuervo, Ana Maria (2014) Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci 69 Suppl 1:S33-8
Foster, Daniel J; Gentry, Patrick R; Lizardi-Ortiz, Jose E et al. (2014) M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location. J Neurosci 34:3253-62
Fedorowicz, Maja A; de Vries-Schneider, Rosa L A; Rub, Cornelia et al. (2014) Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy. EMBO Rep 15:86-93
Cebrián, Carolina; Zucca, Fabio A; Mauri, Pierluigi et al. (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 5:3633
Janicki, S C; Park, N; Cheng, R et al. (2014) Estrogen receptor ? variants affect age at onset of Alzheimer's disease in a multiethnic female cohort. Dement Geriatr Cogn Disord 38:200-13
Bras, Jose; Guerreiro, Rita; Darwent, Lee et al. (2014) Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum Mol Genet 23:6139-46
Romaní-Aumedes, J; Canal, M; Martín-Flores, N et al. (2014) Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson's disease. Cell Death Dis 5:e1364
Guardia-Laguarta, Cristina; Area-Gomez, Estela; Rüb, Cornelia et al. (2014) ?-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci 34:249-59

Showing the most recent 10 out of 189 publications