Project 2: Mechanisms of Neurodegeneration in alpha-Synuclein Transgenic Mice. While the causes of Parkinson's disease (PD) is not known, genetic and biochemical abnormalities of alpha- synuclein are directly implicated in the pathogenesis PD and other alpha-synucleinopathies. Transgenic (Tg) mice expressing the A53T mutant human alpha-synuclein develop adult-onset disease with a progressive motoric dysfunction leading to death. The affected mice exhibit many of the features of human alpha- synucleinopathies, including aberrant aggregation of a-Syn and neurodegeneration in subcortical regions. Characterization of alpha-synucleinopathy in Tg mice reveal signs of oxidative stress, including mitochondrial abnormalities. Because both mitochondrial abnormalities and oxidative stress are implicated in the pathogenesis of PD and other a-synucleinopathies, we will examine the pathological relationships between oxidative stress and alpha-synucleinopathies in Hua-Syn Tg mice.
First (Aim 1), we will determine whether the disease in the Tg mice is associated with oxidative stress, particularly associated with mitochondrial abnormalities.
Second (Aims 2 and 3), we will test if oxidative stress act in concert with alpha-synuclein abnormalities exacerbate alpha-synuclein pathology and neurodegeneration. Finally, we hypothesize that oxidative stress causes activation of c-Abl and c-Abl activation directly participates in the disease. We will show that alpha-synuclein pathology is associated with c-Abl activation in mice and in human PD cases. We will show that lack of c-Abl function attenuates neurodegeneration in alpha-synuclein Tg mice. Finally, we will show that c-Abl phosphorylates alpha-synuclein and such alpha-synuclein is preferentially found associated with the aggregates. In addition, we will collaborate with Project 1 to determine if alpha- synuclein pathology leads to defects in parkin function and with Project 3 to determine linke between mutant LRRK2 and alpha-synuclein pathology in vivo. These studies will provide in vivo experimental tests of processes that are directly relevant to the pathogenesis of human alpha-synucleinopathies and may lead to new therapeutic approaches.

Public Health Relevance

Alpha-synuclein abnormalities are implicated as the events responsible for cell death in PD and other related diseases. Thus, understanding how alpha-synuclein abnormalities cause neuronal death in brain will provide better understanding about PD and may lead to therapeutic approaches that will target the underlying processes that are responsible for PD.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center (P50)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Martin, Ian; Kim, Jungwoo Wren; Dawson, Valina L et al. (2014) LRRK2 pathobiology in Parkinson's disease. J Neurochem 131:554-65
Dawson, Ted M; Dawson, Valina L (2014) Parkin plays a role in sporadic Parkinson's disease. Neurodegener Dis 13:69-71
Lee, Yun-Il; Giovinazzo, Daniel; Kang, Ho Chul et al. (2014) Protein microarray characterization of the S-nitrosoproteome. Mol Cell Proteomics 13:63-72
Siuda, Joanna; Jasinska-Myga, Barbara; Boczarska-Jedynak, Magdalena et al. (2014) Early-onset Parkinson's disease due to PINK1 p.Q456X mutation--clinical and functional study. Parkinsonism Relat Disord 20:1274-8
Fatokun, Amos A; Dawson, Valina L; Dawson, Ted M (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171:2000-16
Stafa, Klodjan; Tsika, Elpida; Moser, Roger et al. (2014) Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet 23:2055-77
Martin, Ian; Kim, Jungwoo Wren; Lee, Byoung Dae et al. (2014) Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157:472-85
Tsika, Elpida; Glauser, Liliane; Moser, Roger et al. (2014) Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum Mol Genet 23:4621-38
Pirooznia, Sheila K; Dawson, Valina L; Dawson, Ted M (2014) Motor neuron death in ALS: programmed by astrocytes? Neuron 81:961-3
Lasagna-Reeves, Cristian A; Sengupta, Urmi; Castillo-Carranza, Diana et al. (2014) The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2:56

Showing the most recent 10 out of 141 publications