Core B: Bioenergetics Mitochondrial dysfunction has long been a consistent observation in Parkinson's disease (PD). To understand the consequences of PD disease causing genetic mutations on the function of mitochondria the Bioenergetics Core B will provide the following analyses to the three projects in this program including: Measuring rates of respiration, oxygen consumption and ATP generation, Measuring calcium dynamics, Measuring reactive oxygen and reactive nitrogen species, measuring the activity of the electron transport chain enzymes and metabolic enzymes, and Measuring plasma versus mitochondria! membrane potential and mitochondria! membrane permeability. The Bioenergetics Core B is a shared resource of the Program. It will measure mitochondria! function, membrane permeability and membrane potential in the presence of AIMP2 and characterize mitochondria! enzymes, oxygen consumption and ATP concentrations in the conditional AIMP2 transgenic mice for Project 1. For Project 2 the Core will measure electron transport chain enzymes and metabolic enzymes and reactive oxygen and reactive nitrogen species in the various models of alpha-synuclein mediated neuronal injury. For Project 3 all measures of mitochondria! function will be conducted to characterize the LRRK2 knockout and LRRK2 transgenic mice. Thus this Core will play a central and integrated role in the investigations in the pathogenesis of PD of this Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038377-15
Application #
8533022
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
15
Fiscal Year
2013
Total Cost
$96,153
Indirect Cost
$37,523
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Martin, Ian; Kim, Jungwoo Wren; Dawson, Valina L et al. (2014) LRRK2 pathobiology in Parkinson's disease. J Neurochem 131:554-65
Dawson, Ted M; Dawson, Valina L (2014) Parkin plays a role in sporadic Parkinson's disease. Neurodegener Dis 13:69-71
Lee, Yun-Il; Giovinazzo, Daniel; Kang, Ho Chul et al. (2014) Protein microarray characterization of the S-nitrosoproteome. Mol Cell Proteomics 13:63-72
Siuda, Joanna; Jasinska-Myga, Barbara; Boczarska-Jedynak, Magdalena et al. (2014) Early-onset Parkinson's disease due to PINK1 p.Q456X mutation--clinical and functional study. Parkinsonism Relat Disord 20:1274-8
Fatokun, Amos A; Dawson, Valina L; Dawson, Ted M (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171:2000-16
Stafa, Klodjan; Tsika, Elpida; Moser, Roger et al. (2014) Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet 23:2055-77
Martin, Ian; Kim, Jungwoo Wren; Lee, Byoung Dae et al. (2014) Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157:472-85
Tsika, Elpida; Glauser, Liliane; Moser, Roger et al. (2014) Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum Mol Genet 23:4621-38
Pirooznia, Sheila K; Dawson, Valina L; Dawson, Ted M (2014) Motor neuron death in ALS: programmed by astrocytes? Neuron 81:961-3
Lasagna-Reeves, Cristian A; Sengupta, Urmi; Castillo-Carranza, Diana et al. (2014) The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2:56

Showing the most recent 10 out of 141 publications