Core C: The Transgenic and Neurobehavior Core has three major aims:
Specific Aim #1 : To generate and maintain breeding colonies of transgenic and gene-targeted mouse lines and to provide cohorts of transgenic and gene-targeted mice for studies proposed in Projects #1 to #3 of the Center grant.
Specific Aim #2 : To establish C57BL/6 cogenic lines of the transgenic and gene-targeted mice used throughout the study.
Specific Aim #3 : To establish methods to examine behavioral motor and clinical deficits in mouse models of Parkinson's disease. Core C: The Transgenic and neurobehavior core will be a shared central resource of the Parkinson's Disease Research Center servicing Projects 1, 2, and 3 and will play a central role in our investigations in the pathogenesis of Parkinson's disease.

Public Health Relevance

Through the development and maintenance of new and existing mouse models of PD and the neurobehavioral analysis of these PD models, this core will provide the basis for transgenic technology and phenotypic analysis of mice as a central resource to all three projects in the Center to support their research into the pathogenesis of PD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038377-15
Application #
8533023
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
15
Fiscal Year
2013
Total Cost
$149,879
Indirect Cost
$58,489
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Mills, Kelly A; Mari, Zoltan; Bakker, Catherine et al. (2016) Gait function and locus coeruleus Lewy body pathology in 51 Parkinson's disease patients. Parkinsonism Relat Disord 33:102-106
Mao, Xiaobo; Ou, Michael Tianhao; Karuppagounder, Senthilkumar S et al. (2016) Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353:
Geiger, Joshua T; Arthur, Karissa C; Dawson, Ted M et al. (2016) C9orf72 Hexanucleotide Repeat Analysis in Cases with Pathologically Confirmed Dementia with Lewy Bodies. Neurodegener Dis 16:370-2
Mata, Ignacio F; Leverenz, James B; Weintraub, Daniel et al. (2016) GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson's disease. Mov Disord 31:95-102
Rosenthal, Liana S; Drake, Daniel; Alcalay, Roy N et al. (2016) The NINDS Parkinson's disease biomarkers program. Mov Disord 31:915-23
Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang et al. (2016) Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 19:248-57
Karuppagounder, Senthilkumar S; Xiong, Yulan; Lee, Yunjong et al. (2016) LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity. J Chem Neuroanat 76:90-97
Davis, Marie Y; Johnson, Catherine O; Leverenz, James B et al. (2016) Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurol 73:1217-1224
Nucifora Jr, Frederick C; Nucifora, Leslie G; Ng, Chee-Hoe et al. (2016) Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nat Commun 7:11792
Mills, Kelly A; Mari, Zoltan; Pontone, Gregory M et al. (2016) Cognitive impairment in Parkinson's disease: Association between patient-reported and clinically measured outcomes. Parkinsonism Relat Disord 33:107-114

Showing the most recent 10 out of 206 publications