- PROJECT 4: LRRK2 BIOLOGY IN PARKINSON'S DISEASE Parkinson's disease (PD) is a complex neurodegenerative disorder that is both sporadic and familial. Mutations in the leucine-rich repeat kinase 2 (LRRK2) have recently been shown to result in 4% of autosomal dominant familial cases and 1% of sporadic cases worldwide. The clinical and pathological phenotypes of LRRK2 PD patients are similar to classic late-onset PD and LRRK2 knock out animals are resistant to ?- synuclein dopaminergic (DA) neurodegeneration, further emphasizing the potential importance of this gene. This project will address mechanisms of how aberrant kinase activity leads to disease. Our hypothesis is that disease causing LRRK2 GS elicits translational deregulation through pathogenic phosphorylation of s15, leading altered protein expression and neuronal dysfunction and death. Comprehensive understanding of the molecular changes in mRNA translation, the transcriptome and the proteome elicited by LRRK2 GS is required to understand DA vulnerability. There is also an important interaction with ?-synuclein that impacts DA vulnerability but the mechanism is not yet known.
Aim 1 to address the ongoing controversy regarding the importance of the increased kinase activity of LRRK2 GS mutation on DA neuronal viability, LRRK2 GS kinase-dead (LRRK2 GS/DA) mice were made. These mice also provide a model to explore the non-kinase actions of LRRK2 that has been lacking from the field. Behavioral, neuroanatomical and neurochemical changes will be monitored over time. The functional interaction between LRRK2 and ?-synuclein toxicity and transmission will be monitored in LRRK2 KO and transgenic lines to determine loss of LRRK2 function is protective and gain of LRRK2 function is toxic.
Aim 2 will address the new observation that phosphorylated s15 is a pathogenic target of LRRK2 GS, expression of s15 and phospho-s15 will be monitored in transgenic mice and human postmortem tissue. It will be determined if phosphomimetic s15 is sufficient to elicit neurodegeneration and if phosphodeficient s15 can provide protection from LRRK2 GS neurotoxicity in global and spatially restricted models. These studies will confirm in vivo whether s15 is a pathogenic substrate of LRRK2 GS.
Aim 3 will define the specific changes in mRNA translation, the transcriptome and proteome using advanced technologies in genetically engineered mice and human dopaminergic cultures. The use of both mouse and human models allows assessments in the intact brain while investigating acute changes that lead to chronic neurodegeneration in a relevant human system. The unbiased comprehensive datasets will be a valuable resource to all PD investigators. The goal of this project is to identify nodal points in the signal cascade of neurodegeneration that can provide new targets for future development of therapeutic strategies for the treatment of PD.

Public Health Relevance

Gene mutations in LRRK2 are a common cause of familial and some sporadic PD, yet little is known about physiologic as well as the pathologic actions of LRRK2. Our discovery that mutant LRRK2 abnormally phosphorylates ribosomal protein s15 implicates altered RNA translation and protein expression in neurodegeneration. The goals of this project are to understand the role of increased LRRK2 kinase activity and increased phosho-s15 on RNA translation, the transcriptome and proteome in order to identify nodal points of the network of events that may be critical to altering the outcome of neurodegeneration.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-J (07))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Mills, Kelly A; Mari, Zoltan; Bakker, Catherine et al. (2016) Gait function and locus coeruleus Lewy body pathology in 51 Parkinson's disease patients. Parkinsonism Relat Disord 33:102-106
Mao, Xiaobo; Ou, Michael Tianhao; Karuppagounder, Senthilkumar S et al. (2016) Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353:
Geiger, Joshua T; Arthur, Karissa C; Dawson, Ted M et al. (2016) C9orf72 Hexanucleotide Repeat Analysis in Cases with Pathologically Confirmed Dementia with Lewy Bodies. Neurodegener Dis 16:370-2
Mata, Ignacio F; Leverenz, James B; Weintraub, Daniel et al. (2016) GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson's disease. Mov Disord 31:95-102
Rosenthal, Liana S; Drake, Daniel; Alcalay, Roy N et al. (2016) The NINDS Parkinson's disease biomarkers program. Mov Disord 31:915-23
Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang et al. (2016) Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 19:248-57
Karuppagounder, Senthilkumar S; Xiong, Yulan; Lee, Yunjong et al. (2016) LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity. J Chem Neuroanat 76:90-97
Davis, Marie Y; Johnson, Catherine O; Leverenz, James B et al. (2016) Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurol 73:1217-1224
Nucifora Jr, Frederick C; Nucifora, Leslie G; Ng, Chee-Hoe et al. (2016) Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nat Commun 7:11792
Mills, Kelly A; Mari, Zoltan; Pontone, Gregory M et al. (2016) Cognitive impairment in Parkinson's disease: Association between patient-reported and clinically measured outcomes. Parkinsonism Relat Disord 33:107-114

Showing the most recent 10 out of 206 publications