- PROJECT 1: BIOLOGY OF PARKIN AND ITS ROLE IN PARKINSON'S DISEASE Parkinson's disease (PD) is a complex neurodegenerative disorder that is both sporadic and familial. Mutations in parkin are the most common cause of autosomal recessive PD. In sporadic PD dopaminergic, oxidative and nitrosative stress as well as c-Abl phosphorylation result in inhibition of parkin. Thus, loss of parkin function is elemental to both familial and sporadic PD. Parkin is an E3 ligase, this loss of function leads to accumulation of the substrates, AIMP2 and PARIS. We have found that AIMP2 expression leads to age dependent DA neurodegeneration due to parthanatos. And PARIS expression may lead to loss of mitochondrial quality control that promotes neurodegeneration. Our hypothesis is that parkin inactivation in sporadic PD by nitrosative/oxidative stress, and c-Abl activation leads to phosphorylation of parkin on Y143 (pY143 parkin) and inactivation followed by the accumulation of parkin substrates, loss of mitochondrial quality control and toxicity. In parallel, ?-synuclein is phosphorylated on Y39 (pY39 ?-synuclein) resulting in aggregation and subsequent toxicity. Since aggregated ?-synuclein can lead to mitochondrial dysfunction it creates a feed forward cycle.
Aim 1 : One of the unifying features of PD is mitochondrial dysfunction.
This aim will explore the inter- relationship of PARIS and mitochondrial dysfunction caused by mutations in parkin. We have shown that PARIS is an important pathophysiologic substrate of parkin in PD that transcriptionally represses PGC-1? a major transcriptional co-activator that regulates mitochondrial biogenesis and mitochondrial oxidant stress responses.
Aim 2 : Inactivation of parkin results in accumulation of both AIMP2 and PARIS. Expression of either AIMP2 or PARIS is sufficient to promote age dependent DA neurodegeneration. The sequence of events activated by PARIS and AIMP2 will be explored to determine if and how these two proteins interact to initiate the cell death program, parthanatos.
Aim 3 : We observe pY143 parkin and elevated AIMP2 and PARIS in A53T ?-synuclein transgenic mice that raises the question of whether parkin inactivation, PARIS and AIMP2 upregulation and PARP1 activation play a role in ?-synuclein induced neurodegeneration? This possibility will be explored with the ?-synuclein preformed fibrils (PFFs) model of PD.
Aim 4 : State-of-the-art technology including deep sequencing and SILAM (stable isotope labeling by amino acids in mammals) will be deployed to identify genes and proteins that are regulated by adult conditional knockout of parkin and their relationship to PARIS induction with the goal of identify nodal points in the signal cascade of neurodegeneration that can provide new targets for the treatment of PD.

Public Health Relevance

Loss of parkin function the most common cause of familial PD and is present in the majority of sporadic PD. Loss of parkin function leads to accumulation of parkin substrates, AIMP2 and PARIS that facilitate age dependent dopaminergic neuronal cell loss, possibly due to impairment of mitochondrial quality control. The goals of this project are to understand mechanistic signaling events that result in neurodegeneration due to loss of parkin function resulting in accumulation of PARIS and AIMP2.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Hinkle, Jared T; Perepezko, Kate; Rosenthal, Liana S et al. (2017) Markers of impaired motor and cognitive volition in Parkinson's disease: Correlates of dopamine dysregulation syndrome, impulse control disorder, and dyskinesias. Parkinsonism Relat Disord :
Panicker, Nikhil; Dawson, Valina L; Dawson, Ted M (2017) Activation mechanisms of the E3 ubiquitin ligase parkin. Biochem J 474:3075-3086
Dawson, Ted M; Dawson, Valina L (2017) Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. Annu Rev Pharmacol Toxicol 57:437-454
Yun, Seung Pil; Kim, Hyojung; Ham, Sangwoo et al. (2017) VPS35 regulates parkin substrate AIMP2 toxicity by facilitating lysosomal clearance of AIMP2. Cell Death Dis 8:e2741
Sulzer, David; Alcalay, Roy N; Garretti, Francesca et al. (2017) T cells from patients with Parkinson's disease recognize ?-synuclein peptides. Nature 546:656-661
Liddelow, Shane A; Guttenplan, Kevin A; Clarke, Laura E et al. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481-487
Xiong, Yulan; Dawson, Ted M; Dawson, Valina L (2017) Models of LRRK2-Associated Parkinson's Disease. Adv Neurobiol 14:163-191
Gwinn, Katrina; David, Karen K; Swanson-Fischer, Christine et al. (2017) Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program. Biomark Med 11:451-473
Ando, Maya; Fiesel, Fabienne C; Hudec, Roman et al. (2017) The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Mol Neurodegener 12:32
Lee, Yunjong; Stevens, Daniel A; Kang, Sung-Ung et al. (2017) PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. Cell Rep 18:918-932

Showing the most recent 10 out of 228 publications