Our Udall Center proposal continues to have a Molecular Core intended to provide scientific support to the re- search teams. The Molecular Core will provide four services to the program team. The first is to provide gene expression analysis using a combination of fluorescence activated cell sorting (FACS) and quantitative real time PCR (qPCR). Projects 1, 2, 3, and 5 make use of this approach. The second service is to provide consultation and assistance for genotyping. The projects 1, 2, 3 and 4 makes extensive use of transgenic animals that require accurate and timely genotyping. The third service is to provide assistance in the design and construction of viral vectors for gene knockdown. Both projects 2 and 3 make extensive use of this technology. The third service is to provide assistance in the design and construction of viral vectors for gene delivery. Projects 1, 2, 3 and 5 make use of this service for delivery of various expression constructs related to optogenetics, pharmacogenomics and redox reporting. Dr. C. Savio Chan, will serve as the Core Director and oversee the operation of the core. Dr. Chan has extensive experience with gene expression studies, including: single-cell, FACS-based cell-population, and tissue-level analyses. All necessary methods in the Molecular Core facility have been established previously. The Molecular Core will be administered by Dr. Chan with the assistance of Dr. Jyothisri Kondapalli. Together, they will be responsible for the day-to-day operation of the core, supervision of technical staff, purchasing supplies, etc.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-J (03))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
United States
Zip Code
Wilson, Charles J; Barraza, David; Troyer, Todd et al. (2014) Predicting the responses of repetitively firing neurons to current noise. PLoS Comput Biol 10:e1003612
Surmeier, D James; Graves, Steven M; Shen, Weixing (2014) Dopaminergic modulation of striatal networks in health and Parkinson's disease. Curr Opin Neurobiol 29:109-17
Sanchez-Padilla, Javier; Guzman, Jaime N; Ilijic, Ema et al. (2014) Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat Neurosci 17:832-40
Gittis, Aryn H; Berke, Joshua D; Bevan, Mark D et al. (2014) New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci 34:15178-83
Deister, Christopher A; Dodla, Ramana; Barraza, David et al. (2013) Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 109:497-506
Atherton, Jeremy F; Menard, Ariane; Urbain, Nadia et al. (2013) Short-term depression of external globus pallidus-subthalamic nucleus synaptic transmission and implications for patterning subthalamic activity. J Neurosci 33:7130-44
Dodla, Ramana; Wilson, Charles J (2013) Effect of phase response curve skewness on synchronization of electrically coupled neuronal oscillators. Neural Comput 25:2545-610
Wilson, C J (2013) Active decorrelation in the basal ganglia. Neuroscience 250:467-82
Sulzer, David; Surmeier, D James (2013) Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 28:715-24
Dryanovski, Dilyan I; Guzman, Jaime N; Xie, Zhong et al. (2013) Calcium entry and *-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci 33:10154-64

Showing the most recent 10 out of 76 publications