Our Udall Center proposal continues to have a Molecular Core intended to provide scientific support to the re- search teams. The Molecular Core will provide four services to the program team. The first is to provide gene expression analysis using a combination of fluorescence activated cell sorting (FACS) and quantitative real time PCR (qPCR). Projects 1, 2, 3, and 5 make use of this approach. The second service is to provide consultation and assistance for genotyping. The projects 1, 2, 3 and 4 makes extensive use of transgenic animals that require accurate and timely genotyping. The third service is to provide assistance in the design and construction of viral vectors for gene knockdown. Both projects 2 and 3 make extensive use of this technology. The third service is to provide assistance in the design and construction of viral vectors for gene delivery. Projects 1, 2, 3 and 5 make use of this service for delivery of various expression constructs related to optogenetics, pharmacogenomics and redox reporting. Dr. C. Savio Chan, will serve as the Core Director and oversee the operation of the core. Dr. Chan has extensive experience with gene expression studies, including: single-cell, FACS-based cell-population, and tissue-level analyses. All necessary methods in the Molecular Core facility have been established previously. The Molecular Core will be administered by Dr. Chan with the assistance of Dr. Jyothisri Kondapalli. Together, they will be responsible for the day-to-day operation of the core, supervision of technical staff, purchasing supplies, etc.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS047085-12
Application #
8739550
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
12
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
City
Chicago
State
IL
Country
United States
Zip Code
60611
Higgs, Matthew H; Wilson, Charles J (2017) Measurement of phase resetting curves using optogenetic barrage stimuli. J Neurosci Methods 289:23-30
Burbulla, Lena F; Song, Pingping; Mazzulli, Joseph R et al. (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 357:1255-1261
Surmeier, D James; Obeso, José A; Halliday, Glenda M (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18:101-113
Surmeier, D James; Obeso, José A; Halliday, Glenda M (2017) Parkinson's Disease Is Not Simply a Prion Disorder. J Neurosci 37:9799-9807
Chu, Hong-Yuan; McIver, Eileen L; Kovaleski, Ryan F et al. (2017) Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons. Neuron 95:1306-1318.e5
Galtieri, Daniel J; Estep, Chad M; Wokosin, David L et al. (2017) Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. Elife 6:
Surmeier, D James; Schumacker, Paul T; Guzman, Jaime D et al. (2017) Calcium and Parkinson's disease. Biochem Biophys Res Commun 483:1013-1019
Dodla, Ramana; Wilson, Charles J (2017) Effect of Phase Response Curve Shape and Synaptic Driving Force on Synchronization of Coupled Neuronal Oscillators. Neural Comput 29:1769-1814
Shi, Han; Deng, Han-Xiang; Gius, David et al. (2017) Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum Mol Genet 26:1915-1926
Abrahao, Karina P; Chancey, Jessica H; Chan, C Savio et al. (2017) Ethanol-Sensitive Pacemaker Neurons in the Mouse External Globus Pallidus. Neuropsychopharmacology 42:1070-1081

Showing the most recent 10 out of 116 publications