The initial funding period showed that patients with Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) have impaired executive control that interferes with processing crucial aspects of language such as narrative conversation and sentence ambiguity. These fine-grained measures showed greater deficits in DLB than PDD, and performance was related to gray matter (GM) atrophy of specific frontal regions, overlapping relevant measures of executive control. In addition to diagnostic specificity that promises to help differentiate DLB from PDD, these language measures have face validity since they are correlated with functional measures of daily living (ADLs). In this competing renewal, we build on initial findings with cognitive, imaging, biomarker and clinical-pathological studies that will lead to improved diagnostic accuracy.
Specific Aim 1 will assess the complex cognitive and neural basis for conversational narrative in PDD/DLB. We focus on coordination, or the ability to adjust a conversational narrative to optimize communication with a conversational partner.
Specific Aim 2 will assess the cognitive and neural basis for processing lexical ambiguity in PDD/DLB. We will evaluate anaphora, or the assignment of a referent to a pronoun, and homonym meaning. We expect significant deficits in these executive-mediated aspects of language, with worse performance in DLB than PDD, and both worse than PD. Regression analyses will relate these deficits to executive measures such as mental flexibility. Theory of Mind, and decision-making. Novel MRI analyses of GM atrophy and diffusion tensor imaging tractography studies of white matter (WM) disease will relate these deficits to interruption of a large-scale neural network involving several prefrontal GM regions and associated WM frontal-striatal projections. We will relate performance to functional status from Project 1, to cognitive measures from Core B, biofluid biomarkers from Core C, and novel lysates of alpha-synuclein (AS) strains from Projects 3 and 4.
Specific Aim 3 will assess the pathologic basis for these cognitive deficits in a comparative, clinical-pathological assessment of PDD and DLB. We expect significant prefrontal disease with neuronal loss and gliosis. Relative to PDD, denser histopathologic abnormalities involving AS, Beta-amyloid (AB) and tau will be seen in dorsolateral, ventral-orbital and medial frontal regions in DLB. This work will lead to novel behavioral and imaging markers of disease that distinguish PDD from DLB, and can potentially serve as targets for behavioral intervention while also advancing cognitive neuroscience.

Public Health Relevance

Parkinson's disease dementia (PDD) and Lewy body disease (DLB) appear to be distinct conditions that may have differing histopathologic abnormalities, although these distinctions have proven very elusive. The proposed studies will use fine-grained, executive-mediated language measures, novel measures of gray matter and white matter MRI imaging, and analytes from other cores and projects in this Udall program to define distinctions between PDD and DLB, and these will be validated in clinical-pathological studies of these cases. This work will lead to improved diagnostic accuracy, and help develop novel measures that may be useful as endpoints in clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS053488-08
Application #
8705041
Study Section
Special Emphasis Panel (ZNS1-SRB-J)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
8
Fiscal Year
2014
Total Cost
$274,735
Indirect Cost
$103,032
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Brennan, Laura; Siderowf, Andrew; Rubright, Jonathan D et al. (2016) The Penn Parkinson's Daily Activities Questionnaire-15: Psychometric properties of a brief assessment of cognitive instrumental activities of daily living in Parkinson's disease. Parkinsonism Relat Disord 25:21-6
Fullard, Michelle E; Tran, Baochan; Xie, Sharon X et al. (2016) Olfactory impairment predicts cognitive decline in early Parkinson's disease. Parkinsonism Relat Disord 25:45-51
Roalf, David R; Moore, Tyler M; Wolk, David A et al. (2016) Defining and validating a short form Montreal Cognitive Assessment (s-MoCA) for use in neurodegenerative disease. J Neurol Neurosurg Psychiatry :
Brettschneider, J; Irwin, D J; Boluda, S et al. (2016) Progression of alpha-synuclein pathology in multiple system atrophy of the cerebellar type. Neuropathol Appl Neurobiol :
Biundo, Roberta; Weis, L; Bostantjopoulou, S et al. (2016) MMSE and MoCA in Parkinson's disease and dementia with Lewy bodies: a multicenter 1-year follow-up study. J Neural Transm (Vienna) 123:431-8
Lim, Nicholas S; Swanson, Christine R; Cherng, Hua-Ren et al. (2016) Plasma EGF and cognitive decline in Parkinson's disease and Alzheimer's disease. Ann Clin Transl Neurol 3:346-55
Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F et al. (2016) Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation. J Neurosci 36:3829-38
Chahine, Lama M; Weintraub, Daniel; Hawkins, Keith A et al. (2016) Cognition in individuals at risk for Parkinson's: Parkinson associated risk syndrome (PARS) study findings. Mov Disord 31:86-94
Tuttle, Marcus D; Comellas, Gemma; Nieuwkoop, Andrew J et al. (2016) Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol 23:409-15
White, Matthew T; Shaw, Leslie M; Xie, Sharon X et al. (2016) Evaluation of Cerebrospinal Fluid Assay Variability in Alzheimer's Disease. J Alzheimers Dis 51:463-70

Showing the most recent 10 out of 250 publications