The administrative core will support all aspects of the Center's overall mission. In terms of the Center's research mission, Core A will provide the organizational structure for meetings of Center personnel, advisory boards and other researchers, compile progress and budgetary reports for the NIH, facilitate resource sharing, and serve as a nodal point for PD-related research at Emory University, so that the collaborative interactions within the research community at this institution are enhanced. The Core will also administer a pilot grant program, financed through University matching funds. In addition, the administrative core will oversee and organize the numerous opportunities for students, postdoctoral fellows, and clinical residents and fellows to learn about PD and participate in PD-related research with Center investigators. In conjunction with a Community Outreach Board, the Core will also administer resources for the Center's outreach efforts to the larger community.

Public Health Relevance

The administrative core is essential for the function of the Center. It supports the Center's research mission by maintaining communications between Center personnel, advisory borads, NIH, and other scientists. The core will also support the Udall Center's educational and outreach missions. All of these activities will help to establish a collaborative high-impact PD research environment at Emory University

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-E)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
United States
Zip Code
Chen, Erdong; Paré, Jean-Francois; Wichmann, Thomas et al. (2016) Sub-synaptic localization of Cav3.1 T-type calcium channels in the thalamus of normal and parkinsonian monkeys. Brain Struct Funct :
Wichmann, Thomas; DeLong, Mahlon R (2016) Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 13:264-83
Yung, Cheryl; Sha, Di; Li, Lian et al. (2016) Parkin Protects Against Misfolded SOD1 Toxicity by Promoting Its Aggresome Formation and Autophagic Clearance. Mol Neurobiol 53:6270-6287
Alter, Shawn P; Stout, Kristen A; Lohr, Kelly M et al. (2016) Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration. Exp Neurol 275 Pt 1:17-24
Bowman, F DuBois; Drake, Daniel F; Huddleston, Daniel E (2016) Multimodal Imaging Signatures of Parkinson's Disease. Front Neurosci 10:131
Galvan, Adriana; Hu, Xing; Smith, Yoland et al. (2016) Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys. J Neurosci 36:3519-30
Sampat, Radhika; Young, Sarah; Rosen, Ami et al. (2016) Potential mechanisms for low uric acid in Parkinson disease. J Neural Transm (Vienna) 123:365-70
Sanders, Teresa H; Jaeger, Dieter (2016) Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis 95:225-37
Devergnas, Annaelle; Chen, Erdong; Ma, Yuxian et al. (2016) Anatomical localization of Cav3.1 calcium channels and electrophysiological effects of T-type calcium channel blockade in the motor thalamus of MPTP-treated monkeys. J Neurophysiol 115:470-85
Iskhakova, Liliya; Smith, Yoland (2016) mGluR4-containing corticostriatal terminals: synaptic interactions with direct and indirect pathway neurons in mice. Brain Struct Funct 221:4589-4599

Showing the most recent 10 out of 83 publications