Core B is a central component of the Emory Udall Center of Excellence for Parkinson's disease research. The Core will provide neuroanatomical and behavioral expertise that will be essential to the successful completion of all projects proposed in this application. In contrast to traditional service cores, core B will not only provide technical expertise to the projects, but will play an active role in the study design as well as collection, analysis and interpretation of data related to each project. The proposed work that will be achieved by the core for the different projects include : (1) Project 1: In this project, the core will be responsible for immuno-electron microscopic studies of the localization of muscarinic receptor subtypes in the ventral motor thalamic nuclei of normal mice, and mouse models of Parkinson's disease. These findings will complement the physiological data Dr. Jaeger and his colleagues will collect on the role of these receptors in the regulation of firing activity in the parkinsonian thalamus. (2) Project 2: In this project, light and electron microscopy immunostaining methods will be used to characterize plastic changes in the synaptic connectivity and GABA receptor expression in the ventral motor thalamic nuclei of parkinsonian monkeys with lesions of the internal globus pallidus. These findings will be essential for the interpretation of the electrophysiological and behavioral effects of pallidotomies on thalamic activity and parkinsonian behavior. (3) Project 3: The core will determine the effects of TrkB agonists on striatal spine loss in mouse and monkey models of Parkinson's disease and assess the antiparkinsonian efficacy of TrkB agonist in parkinsonian monkeys. Together, findings of these studies will contribute to the characterization of a novel restorative therapy that could be used in patients with Parkinson's disease. (4) Project 4: In this project. Core B will provide a detailed quantitative assessment of the cellular and ultrastructural localization of the Ml and M4 muscarinic receptor immunoreactivity in the subthalamic nucleus and the substantia nigra pars reticulata. Such information will be critical for the interpretation of electrophysiological and behavioral effects induced by the different muscarinic receptor antagonists used in this project.

Public Health Relevance

The services provided by Core B are a major asset to the Center. The core's anatomical and behavioral services will complement the expertise of the Pis in charge of the four main projects. Through its crosscutting integration with all projects of the Center, Core B will serve as a central integrative component to foster collaborative interactions between project investigators.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-E)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
United States
Zip Code
Chen, Erdong; Paré, Jean-Francois; Wichmann, Thomas et al. (2016) Sub-synaptic localization of Cav3.1 T-type calcium channels in the thalamus of normal and parkinsonian monkeys. Brain Struct Funct :
Wichmann, Thomas; DeLong, Mahlon R (2016) Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 13:264-83
Yung, Cheryl; Sha, Di; Li, Lian et al. (2016) Parkin Protects Against Misfolded SOD1 Toxicity by Promoting Its Aggresome Formation and Autophagic Clearance. Mol Neurobiol 53:6270-6287
Alter, Shawn P; Stout, Kristen A; Lohr, Kelly M et al. (2016) Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration. Exp Neurol 275 Pt 1:17-24
Bowman, F DuBois; Drake, Daniel F; Huddleston, Daniel E (2016) Multimodal Imaging Signatures of Parkinson's Disease. Front Neurosci 10:131
Galvan, Adriana; Hu, Xing; Smith, Yoland et al. (2016) Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys. J Neurosci 36:3519-30
Sampat, Radhika; Young, Sarah; Rosen, Ami et al. (2016) Potential mechanisms for low uric acid in Parkinson disease. J Neural Transm (Vienna) 123:365-70
Sanders, Teresa H; Jaeger, Dieter (2016) Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis 95:225-37
Devergnas, Annaelle; Chen, Erdong; Ma, Yuxian et al. (2016) Anatomical localization of Cav3.1 calcium channels and electrophysiological effects of T-type calcium channel blockade in the motor thalamus of MPTP-treated monkeys. J Neurophysiol 115:470-85
Iskhakova, Liliya; Smith, Yoland (2016) mGluR4-containing corticostriatal terminals: synaptic interactions with direct and indirect pathway neurons in mice. Brain Struct Funct 221:4589-4599

Showing the most recent 10 out of 83 publications