The Statistics and Data Management Core will provide essential support for statistical analysis and data management for the three projects proposed in this application. For the past 25 years, the Biostatistics Unit at the Feinstein Institute for Medical Research has collaborated with investigators at the NSLIJ Health System and other Institutes in Phase 1,11 and 111 trials that are sponsored by NIH or by pharmaceutical companies. Dr. Martin Lesser, the Core Learder and the Director of the Biostatistics Unit, and other Core members have extensive experience in the design, data management, and analysis of clinical research projects/trials. This core consists of two components. The Biostatistics component will support Project teams of all three Projects by providing statistical advice in study design, data analysis and interpretation. Additionally, for the Project 3, the Core will explore new methods of statistical classification for differential diagnosis of patients with parkinsonism. The other component ofthe Core is Data Management, which will have primary responsibility forthe development and maintenance ofthe data management system and procedures for all the projects in this application. Support will be provided in many areas including case report form development, data entry, database programming, database query, data quality assurance, report production, auditing, etc.

Public Health Relevance

This Core will assist the Project team in statistical analysis and data management for the three proposed projects, which aim to improve our understanding on pathophysiology, treatment responses, and differential diagnosis for patients with parkinsonism.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS071675-03
Application #
8382431
Study Section
Special Emphasis Panel (ZNS1-SRB-E)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
3
Fiscal Year
2012
Total Cost
$118,485
Indirect Cost
$47,108
Name
Feinstein Institute for Medical Research
Department
Type
DUNS #
110565913
City
Manhasset
State
NY
Country
United States
Zip Code
11030
Lerner, Renata P; Francardo, Veronica; Fujita, Koji et al. (2017) Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci Rep 7:16005
Vo, An; Sako, Wataru; Fujita, Koji et al. (2017) Parkinson's disease-related network topographies characterized with resting state functional MRI. Hum Brain Mapp 38:617-630
Hendershott, Taylor R; Zhu, Delphine; Llanes, Seoni et al. (2017) Domain-specific accuracy of the Montreal Cognitive Assessment subsections in Parkinson's disease. Parkinsonism Relat Disord 38:31-34
Tomše, Petra; Jensterle, Luka; Rep, Sebastijan et al. (2017) The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson's disease. Phys Med 41:129-135
Ng, Bernard; Varoquaux, Gael; Poline, Jean Baptiste et al. (2017) Distinct alterations in Parkinson's medication-state and disease-state connectivity. Neuroimage Clin 16:575-585
Davis, Marie Y; Johnson, Catherine O; Leverenz, James B et al. (2016) Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurol 73:1217-1224
Lerner, Renata P; Bimpisidis, Zisis; Agorastos, Stergiani et al. (2016) Dissociation of metabolic and hemodynamic levodopa responses in the 6-hydroxydopamine rat model. Neurobiol Dis 96:31-37
Tripathi, Madhavi; Tang, Chris C; Feigin, Andrew et al. (2016) Automated Differential Diagnosis of Early Parkinsonism Using Metabolic Brain Networks: A Validation Study. J Nucl Med 57:60-6
Jourdain, Vincent A; Tang, Chris C; Holtbernd, Florian et al. (2016) Flow-metabolism dissociation in the pathogenesis of levodopa-induced dyskinesia. JCI Insight 1:e86615
Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C et al. (2015) Metabolic resting-state brain networks in health and disease. Proc Natl Acad Sci U S A 112:2563-8

Showing the most recent 10 out of 42 publications