This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The ovarian surface epithelium (OSE) is the source of most ovarian cancers in women, yet comprises less than 1/1,000th of the ovary. The basis for OSE transformation is poorly understood, hindering the development of improved strategies for treatment. Since the prognosis for ovarian cancer declines dramatically when the disease is diagnosed at later stages (95% cure rate at stage I, but a 5-year survival rate of only 10% at stage IV), strategies for prevention and early detection may offer the best hope of reducing the number of fatalities from ovarian cancer. We are developing two novel strategies for ovarian cancer prevention: first, we seek to eliminate the OSE completely, using detergent and mild abrasion (epitheliectomy);second, we wish to modulate FANCD2 expression in the OSE. This project more broadly seeks to establish a research program whereby microarray and molecular analysis of OSE cells from healthy, at risk, and cancer patients will identify key elements in OSE transformation. The nonhuman primate system will be used to evaluate these elements as candidates for therapeutic manipulation, and the data will be translated into clinical application for ovarian cancer prevention and early detection therapies. Current data indicate the OSE may be effectively removed without impairing ovarian function. In addition, we have eliminated FANCD2 gene methylation and histone acetylation as probable mechanisms for its downregulation in at-risk women. Ongoing research will determine whether miRNA's are affecting FANCD2 mRNA levels.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000163-52
Application #
8357782
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
52
Fiscal Year
2011
Total Cost
$43,647
Indirect Cost
Name
Oregon Health and Science University
Department
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Su, Weiping; Foster, Scott C; Xing, Rubing et al. (2017) CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. J Biol Chem 292:4434-4445
Lima, Fernanda B; Leite, Cristiane M; Bethea, Cynthia L et al. (2017) Progesterone increased ?-endorphin innervation of the locus coeruleus, but ovarian steroids had no effect on noradrenergic neurodegeneration. Brain Res 1663:1-8
Slayden, Ov Daniel (2016) Translational In Vivo Models for Women's Health: The Nonhuman Primate Endometrium--A Predictive Model for Assessing Steroid Receptor Modulators. Handb Exp Pharmacol 232:191-202
Chadderdon, S M; Belcik, J T; Bader, L et al. (2016) Vasoconstrictor eicosanoids and impaired microvascular function in inactive and insulin-resistant primates. Int J Obes (Lond) 40:1600-1603
Dufour, Brett D; McBride, Jodi L (2016) Intravascular AAV9 Administration for Delivering RNA Silencing Constructs to the CNS and Periphery. Methods Mol Biol 1364:261-75
Meyer, Thomas J; Held, Ulrike; Nevonen, Kimberly A et al. (2016) The Flow of the Gibbon LAVA Element Is Facilitated by the LINE-1 Retrotransposition Machinery. Genome Biol Evol 8:3209-3225
Pleil, Kristen E; Helms, Christa M; Sobus, Jon R et al. (2016) Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST. Addict Biol 21:1151-1167
Mohiuddin, Muhammad M; Singh, Avneesh K; Corcoran, Philip C et al. (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138
Sylwester, Andrew; Nambiar, Kate Z; Caserta, Stefano et al. (2016) A new perspective of the structural complexity of HCMV-specific T-cell responses. Mech Ageing Dev 158:14-22
Laws, L H; Parker, C E; Cherala, G et al. (2016) Inflammation Causes Resistance to Anti-CD20-Mediated B Cell Depletion. Am J Transplant 16:3139-3149

Showing the most recent 10 out of 481 publications