This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The long term objective of this research is to gain an understanding of the neural pathways and cellular mechanisms that are involved in the metabolic regulation of energy expenditure and to determine how alterations in these mechanisms contribute to overweight and obesity and thereby increase the incidence of cardiovascular disease. This model is especially relevant since obesity is a major risk factor for cardiovascular diseases, and the functional amount of brown adipose tissue is inversely correlated with obesity. These studies utilize functional neuroanatomical and in vivo electrophysiological techniques to elucidate the organization and pharmacology of the neural pathway responsible for the glucoprivation-induced decrease in sympathetic activation of brown adipose tissue. The three specific aims test hypotheses on the functional roles of specific neurochemically-defined neurons in the ventrolateral medulla, the paraventricular nucleus of the hypothalamus, and the raphe pallidus area in the glucoprivation-induced decrease in energy expenditure in brown adipose tissue. Progress thus far has indicated that neurons within the paraventricular hypothalamus provide an inhibitory input to the sympathetic pathways mediating thermogenesis in brown adipose tissue. Understanding the neural pathways and mechanisms that inhibit sympathetic outflow to brown adipose tissue will provide a foundation for determining how alterations in these pathways contribute to overweight and obesity, and will represent an important step towards the development of therapeutic approaches to reverse the decrease in energy expenditure associated with dietary restriction and thereby combat obesity, thus alleviating a major risk factor for hypertension and cardiovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000163-52
Application #
8357815
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
52
Fiscal Year
2011
Total Cost
$43,647
Indirect Cost
Name
Oregon Health and Science University
Department
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Su, Weiping; Foster, Scott C; Xing, Rubing et al. (2017) CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. J Biol Chem 292:4434-4445
Lima, Fernanda B; Leite, Cristiane M; Bethea, Cynthia L et al. (2017) Progesterone increased ?-endorphin innervation of the locus coeruleus, but ovarian steroids had no effect on noradrenergic neurodegeneration. Brain Res 1663:1-8
Slayden, Ov Daniel (2016) Translational In Vivo Models for Women's Health: The Nonhuman Primate Endometrium--A Predictive Model for Assessing Steroid Receptor Modulators. Handb Exp Pharmacol 232:191-202
Chadderdon, S M; Belcik, J T; Bader, L et al. (2016) Vasoconstrictor eicosanoids and impaired microvascular function in inactive and insulin-resistant primates. Int J Obes (Lond) 40:1600-1603
Dufour, Brett D; McBride, Jodi L (2016) Intravascular AAV9 Administration for Delivering RNA Silencing Constructs to the CNS and Periphery. Methods Mol Biol 1364:261-75
Meyer, Thomas J; Held, Ulrike; Nevonen, Kimberly A et al. (2016) The Flow of the Gibbon LAVA Element Is Facilitated by the LINE-1 Retrotransposition Machinery. Genome Biol Evol 8:3209-3225
Pleil, Kristen E; Helms, Christa M; Sobus, Jon R et al. (2016) Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST. Addict Biol 21:1151-1167
Mohiuddin, Muhammad M; Singh, Avneesh K; Corcoran, Philip C et al. (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138
Sylwester, Andrew; Nambiar, Kate Z; Caserta, Stefano et al. (2016) A new perspective of the structural complexity of HCMV-specific T-cell responses. Mech Ageing Dev 158:14-22
Laws, L H; Parker, C E; Cherala, G et al. (2016) Inflammation Causes Resistance to Anti-CD20-Mediated B Cell Depletion. Am J Transplant 16:3139-3149

Showing the most recent 10 out of 481 publications