This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The existing HAART (highly active antiviral therapy) is effective in reducing HIV in blood to undetectable levels, the virus rebound after cessation of drug or harboring resistance virus leads to progression to AIDS. Current data indicate that residual virus in key tissues, mainly lymphoid and brain, lead to HIV disease progression. The objective of this program has been to improve localization of anti-HIV drugs to lymphoid tissues and cells so that residual virus will be eliminated from these tissues. This program plans to develop a drug delivery system that provides maximum drug exposure and viral suppression in the brain and other tissues of the central nervous system. Instead of depositing drugs in nasal cells, this technology deposits drugs in olfactory cells and provides direct access to the brain and CNS, thereby improving the efficiency of CNS delivery.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000166-49
Application #
8172751
Study Section
Special Emphasis Panel (ZRR1-CM-8 (02))
Project Start
2010-05-01
Project End
2011-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
49
Fiscal Year
2010
Total Cost
$310,172
Indirect Cost
Name
University of Washington
Department
Veterinary Sciences
Type
Other Domestic Higher Education
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
McAdams, Ryan M; McPherson, Ronald J; Kapur, Raj P et al. (2017) Focal Brain Injury Associated with a Model of Severe Hypoxic-Ischemic Encephalopathy in Nonhuman Primates. Dev Neurosci 39:107-123
Klegarth, Amy R; Ezeonwu, Chigozie A; Rompis, Aida et al. (2017) Survey of Treponemal Infections in Free-Ranging and Captive Macaques, 1999-2012. Emerg Infect Dis 23:816-819
Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D et al. (2017) Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys. J Neurosci 37:8216-8226
Seeman, Stephanie C; Mogen, Brian J; Fetz, Eberhard E et al. (2017) Paired Stimulation for Spike-Timing-Dependent Plasticity in Primate Sensorimotor Cortex. J Neurosci 37:1935-1949
Balakrishnan, Ashwini; Goodpaster, Tracy; Randolph-Habecker, Julie et al. (2017) Analysis of ROR1 Protein Expression in Human Cancer and Normal Tissues. Clin Cancer Res 23:3061-3071
Shooner, Christopher; Hallum, Luke E; Kumbhani, Romesh D et al. (2017) Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys. J Neurosci 37:8734-8741
Rembado, Irene; Zanos, Stavros; Fetz, Eberhard E (2017) Cycle-Triggered Cortical Stimulation during Slow Wave Sleep Facilitates Learning a BMI Task: A Case Report in a Non-Human Primate. Front Behav Neurosci 11:59
Richter, Maximilian; Yumul, Roma; Saydaminova, Kamola et al. (2016) Preclinical safety, pharmacokinetics, pharmacodynamics, and biodistribution studies with Ad35K++ protein: a novel rituximab cotherapeutic. Mol Ther Methods Clin Dev 5:16013
McLoon, Linda K; Christiansen, Stephen P; Ghose, Geoffrey M et al. (2016) Improvement of Eye Alignment in Adult Strabismic Monkeys by Sustained IGF-1 Treatment. Invest Ophthalmol Vis Sci 57:6070-6078
Liao, Hsi-Wen; Ren, Xiaozhi; Peterson, Beth B et al. (2016) Melanopsin-expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J Comp Neurol 524:2845-72

Showing the most recent 10 out of 311 publications